An Evaluation of Projection Methods for Detailed Small Area Projections: An Application and Validation to King County, Washington
Author
Abstract
Suggested Citation
DOI: 10.1007/s11113-023-09848-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Richelle Winkler & Rozalynn Klaas, 2012. "Residential segregation by age in the United States," Journal of Maps, Taylor & Francis Journals, vol. 8(4), pages 374-378, December.
- Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
- David Swanson & Alan Schlottmann & Bob Schmidt, 2010. "Forecasting the Population of Census Tracts by Age and Sex: An Example of the Hamilton–Perry Method in Action," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 29(1), pages 47-63, February.
- Hendrik P. van Dalen & Kène Henkens, 2011.
"Who fears and who welcomes population decline?,"
Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(13), pages 437-464.
- van Dalen, H.P. & Henkens, C.J.I.M., 2011. "Who fears and who welcomes population decline?," Other publications TiSEM 308b5629-3537-457c-8e86-5, Tilburg University, School of Economics and Management.
- Kenneth M. Johnson & Daniel T. Lichter, 2008. "Natural Increase: A New Source of Population Growth in Emerging Hispanic Destinations in the United States," Population and Development Review, The Population Council, Inc., vol. 34(2), pages 327-346, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Kenneth M. Johnson & Daniel T. Lichter, 2016. "Diverging Demography: Hispanic and Non-Hispanic Contributions to U.S. Population Redistribution and Diversity," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 35(5), pages 705-725, October.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
- Bontempi, Gianluca & Ben Taieb, Souhaib, 2011.
"Conditionally dependent strategies for multiple-step-ahead prediction in local learning,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
- Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699.
- Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
- Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
- Trapero, Juan R. & Cardós, Manuel & Kourentzes, Nikolaos, 2019. "Empirical safety stock estimation based on kernel and GARCH models," Omega, Elsevier, vol. 84(C), pages 199-211.
- Artur Tarassow, 2017. "Forecasting growth of U.S. aggregate and household-sector M2 after 2000 using economic uncertainty measures," Macroeconomics and Finance Series 201702, University of Hamburg, Department of Socioeconomics.
- Zanetti Chini, Emilio, 2018.
"Forecasting dynamically asymmetric fluctuations of the U.S. business cycle,"
International Journal of Forecasting, Elsevier, vol. 34(4), pages 711-732.
- Emilio Zanetti Chini, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," DEM Working Papers Series 156, University of Pavia, Department of Economics and Management.
- Emilio Zanetti Chini, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," CREATES Research Papers 2018-13, Department of Economics and Business Economics, Aarhus University.
- Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Hamid Baghestani & Paul Williams, 2017. "Does customer satisfaction have directional predictability for U.S. discretionary spending?," Applied Economics, Taylor & Francis Journals, vol. 49(54), pages 5504-5511, November.
- Mirlatifi, A.M. & Egelioglu, F. & Atikol, U., 2015. "An econometric model for annual peak demand for small utilities," Energy, Elsevier, vol. 89(C), pages 35-44.
- Sbrana, Giacomo & Silvestrini, Andrea, 2013.
"Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework,"
International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
- Giacomo Sbrana & Andrea Silvestrini, 2013. "Forecasting aggregate demand: analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," Temi di discussione (Economic working papers) 929, Bank of Italy, Economic Research and International Relations Area.
- Hendrik P. van Dalen & Kène Henkens, 2021.
"When is fertility too low or too high? Population policy preferences of demographers around the world,"
Population Studies, Taylor & Francis Journals, vol. 75(2), pages 289-303, May.
- van Dalen, Hendrik Peter & Henkens, C.J.I.M., 2021. "When is fertility too low or too high? : Population policy preferences of demographers around the world," Other publications TiSEM a3972075-2021-4327-9d62-4, Tilburg University, School of Economics and Management.
- Jack Baker & Adelamar Alcantara & Xiaomin Ruan & Kendra Watkins & Srini Vasan, 2013. "A Comparative Evaluation of Error and Bias in Census Tract-Level Age/Sex-Specific Population Estimates: Component I (Net-Migration) vs Component III (Hamilton–Perry)," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 919-942, December.
- Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2015.
"Stock return forecasting: Some new evidence,"
International Review of Financial Analysis, Elsevier, vol. 40(C), pages 38-51.
- Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2015. "Stock return forecasting: some new evidence," Working Papers fe_2015_13, Deakin University, Department of Economics.
- Tsao, Yu-Chung & Chen, Yu-Kai & Chiu, Shih-Hao & Lu, Jye-Chyi & Vu, Thuy-Linh, 2022. "An innovative demand forecasting approach for the server industry," Technovation, Elsevier, vol. 110(C).
More about this item
Keywords
Projections; Small areas; Race and ethnicity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:poprpr:v:43:y:2024:i:2:d:10.1007_s11113-023-09848-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.