IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v49y2017i54p5504-5511.html
   My bibliography  Save this article

Does customer satisfaction have directional predictability for U.S. discretionary spending?

Author

Listed:
  • Hamid Baghestani
  • Paul Williams

Abstract

Research indicates that past growth in customer satisfaction is an important factor in explaining the in-sample behaviour of growth in discretionary spending. Motivated by such evidence, we take an out-of-sample forecasting approach to examine whether customer satisfaction has directional predictability for two types of discretionary spending. These include spending on motor vehicles and spending on recreation services, which display frequent negative growth for the period 1995–2015. Our results indicate that customer satisfaction accurately predicts the direction of change in both types of spending under symmetric loss. To augment, we further show that the widely reported consumer sentiment has no directional predictability for either types of discretionary spending.

Suggested Citation

  • Hamid Baghestani & Paul Williams, 2017. "Does customer satisfaction have directional predictability for U.S. discretionary spending?," Applied Economics, Taylor & Francis Journals, vol. 49(54), pages 5504-5511, November.
  • Handle: RePEc:taf:applec:v:49:y:2017:i:54:p:5504-5511
    DOI: 10.1080/00036846.2017.1311002
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2017.1311002
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2017.1311002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephane Dees & Pedro Soares Brinca, 2013. "Consumer confidence as a predictor of consumption spending: Evidence for the United States and the Euro area," International Economics, CEPII research center, issue 134, pages 1-14.
    2. Hall, Robert E, 1978. "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, University of Chicago Press, vol. 86(6), pages 971-987, December.
    3. Yeung, Matthew C.H. & Ramasamy, Bala & Chen, Junsong & Paliwoda, Stan, 2013. "Customer satisfaction and consumer expenditure in selected European countries," International Journal of Research in Marketing, Elsevier, vol. 30(4), pages 406-416.
    4. Tara Sinclair & H. O. Stekler & L. Kitzinger, 2010. "Directional forecasts of GDP and inflation: a joint evaluation with an application to Federal Reserve predictions," Applied Economics, Taylor & Francis Journals, vol. 42(18), pages 2289-2297.
    5. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    6. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    7. repec:cii:cepiei:2013-q2-134-1 is not listed on IDEAS
    8. Hamid Baghestani, 2013. "Evaluating Federal Reserve predictions of growth in consumer spending," Applied Economics, Taylor & Francis Journals, vol. 45(13), pages 1637-1646, May.
    9. Koen Pauwels & Imran Currim & Marnik Dekimpe & Dominique Hanssens & Natalie Mizik & Eric Ghysels & Prasad Naik, 2004. "Modeling Marketing Dynamics by Time Series Econometrics," Marketing Letters, Springer, vol. 15(4), pages 167-183, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ki-Kwang Lee & In-Gyum Kim, 2020. "Social Media Data Analytics to Enhance Sustainable Communications between Public Users and Providers in Weather Forecast Service Industry," Sustainability, MDPI, vol. 12(20), pages 1-13, October.
    2. Ivana Lolić & Marija Logarušić & Mirjana Čižmešija, 2022. "Recent Revision of the European Consumer Confidence Indicator: Is There any additional Space for Improvement?," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 159(3), pages 845-863, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baghestani, Hamid, 2021. "Predicting growth in US durables spending using consumer durables-buying attitudes," Journal of Business Research, Elsevier, vol. 131(C), pages 327-336.
    2. Christian Gayer & Alessandro Girardi & Andreas Reuter, 2016. "Replacing Judgment by Statistics: Constructing Consumer Confidence Indicators on the basis of Data-driven Techniques. The Case of the Euro Area," Working Papers LuissLab 16125, Dipartimento di Economia e Finanza, LUISS Guido Carli.
    3. S. Heravi & J. Easaw & R. Golinelli, 2016. "Generalized State-Dependent Models: A Multivariate Approach," Working Papers wp1067, Dipartimento Scienze Economiche, Universita' di Bologna.
    4. Eleni Zafeiriou & Constantinos Katrakilidis & Chrysanthi Pegiou, 2019. "Consumer Confidence on Heating Oil Prices: An Empirical Study of their Relationship for European Union in a Nonlinear Framework," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 63-90.
    5. Baghestani, Hamid, 2015. "Predicting gasoline prices using Michigan survey data," Energy Economics, Elsevier, vol. 50(C), pages 27-32.
    6. Hamid Baghestani, 2017. "Do US consumer survey data help beat the random walk in forecasting mortgage rates?," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1343017-134, January.
    7. Baghestani, Hamid & AbuAl-Foul, Bassam M., 2017. "Comparing Federal Reserve, Blue Chip, and time series forecasts of US output growth," Journal of Economics and Business, Elsevier, vol. 89(C), pages 47-56.
    8. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    9. Juhro, Solikin M. & Iyke, Bernard Njindan, 2020. "Consumer confidence and consumption expenditure in Indonesia," Economic Modelling, Elsevier, vol. 89(C), pages 367-377.
    10. Sudeshna Ghosh, 2021. "Consumer Confidence and Consumer Spending in Brazil: A Nonlinear Autoregressive Distributed Lag Model Analysis," Arthaniti: Journal of Economic Theory and Practice, , vol. 20(1), pages 53-85, June.
    11. Juan A. Correa & Raúl Morales & Francisco Parro, 2018. "The Effects of Protests on Agents’ Expectations: Evidence from Students’ Demonstrations in Chile," The Developing Economies, Institute of Developing Economies, vol. 56(3), pages 221-235, September.
    12. Jean-Bernard Chatelain & Kirsten Ralf, 2024. "Wealth in the Quadratic Loss Function of the Ramsey Malinvaud Cass Koopmans Model of Optimal Savings," Revue d'économie politique, Dalloz, vol. 134(3), pages 371-390.
    13. Palumbo, Michael & Rudd, Jeremy & Whelan, Karl, 2006. "On the Relationships Between Real Consumption, Income, and Wealth," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 1-11, January.
    14. Hrushikesh Mallick, 2008. "Do remittances impact the economy? Some empirical evidences from a developing economy," Centre for Development Studies, Trivendrum Working Papers 407, Centre for Development Studies, Trivendrum, India.
    15. Sumru Altug, 2004. "Lecture Notes on Macroeconomics," Working Papers 2004/18, Turkish Economic Association.
    16. Clark, Todd E. & McCracken, Michael W., 2012. "In-sample tests of predictive ability: A new approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 1-14.
    17. Till Treeck, 2014. "Did Inequality Cause The U.S. Financial Crisis?," Journal of Economic Surveys, Wiley Blackwell, vol. 28(3), pages 421-448, July.
    18. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    19. Lucas, Robert E, Jr, 1996. "Nobel Lecture: Monetary Neutrality," Journal of Political Economy, University of Chicago Press, vol. 104(4), pages 661-682, August.
    20. Mark Sommer & Kurt Kratena, 2016. "The Carbon Footprint of European Households and Income Distribution. WWWforEurope Working Paper No. 113," WIFO Studies, WIFO, number 58787.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:49:y:2017:i:54:p:5504-5511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.