Spatial Non-stationarity in Opioid Prescribing Rates: Evidence from Older Medicare Part D Beneficiaries
Author
Abstract
Suggested Citation
DOI: 10.1007/s11113-019-09566-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Antonio Páez & Takashi Uchida & Kazuaki Miyamoto, 2002. "A General Framework for Estimation and Inference of Geographically Weighted Regression Models: 1. Location-Specific Kernel Bandwidths and a Test for Locational Heterogeneity," Environment and Planning A, , vol. 34(4), pages 733-754, April.
- Grubesic, Tony H., 2008. "Zip codes and spatial analysis: Problems and prospects," Socio-Economic Planning Sciences, Elsevier, vol. 42(2), pages 129-149, June.
- A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
- Stephen Matthews & Tse-Chuan Yang, 2012. "Mapping the results of local statistics," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(6), pages 151-166.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sauer, Jeffery & Stewart, Kathleen, 2023. "Geographic information science and the United States opioid overdose crisis: A scoping review of methods, scales, and application areas," Social Science & Medicine, Elsevier, vol. 317(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alexis Comber & Khanh Chi & Man Q Huy & Quan Nguyen & Binbin Lu & Hoang H Phe & Paul Harris, 2020. "Distance metric choice can both reduce and induce collinearity in geographically weighted regression," Environment and Planning B, , vol. 47(3), pages 489-507, March.
- Yanzhao Wang & Jianfei Cao, 2023. "Examining the Effects of Socioeconomic Development on Fine Particulate Matter (PM2.5) in China’s Cities Based on Spatial Autocorrelation Analysis and MGWR Model," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
- Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
- Román Mínguez & Roberto Basile & María Durbán, 2024. "Pspatreg: R Package for Semiparametric Spatial Autoregressive Models," Mathematics, MDPI, vol. 12(22), pages 1-27, November.
- Hengyu Gu & Hanchen Yu & Mehak Sachdeva & Ye Liu, 2021. "Analyzing the distribution of researchers in China: An approach using multiscale geographically weighted regression," Growth and Change, Wiley Blackwell, vol. 52(1), pages 443-459, March.
- Shichao Lu & Zhihua Zhang & M. James C. Crabbe & Prin Suntichaikul, 2024. "Effects of Urban Land-Use Planning on Housing Prices in Chiang Mai, Thailand," Land, MDPI, vol. 13(8), pages 1-13, July.
- Jin, Peizhen & Mangla, Sachin Kumar & Song, Malin, 2021. "Moving towards a sustainable and innovative city: Internal urban traffic accessibility and high-level innovation based on platform monitoring data," International Journal of Production Economics, Elsevier, vol. 235(C).
- Chunfang Zhao & Yingliang Wu & Yunfeng Chen & Guohua Chen, 2023. "Multiscale Effects of Hedonic Attributes on Airbnb Listing Prices Based on MGWR: A Case Study of Beijing, China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
- Shengkun Xie & Chong Gan, 2023. "Estimating Territory Risk Relativity Using Generalized Linear Mixed Models and Fuzzy C -Means Clustering," Risks, MDPI, vol. 11(6), pages 1-20, May.
- Abdullah Al Saim & Mohamed H. Aly, 2022. "Machine Learning for Modeling Wildfire Susceptibility at the State Level: An Example from Arkansas, USA," Geographies, MDPI, vol. 2(1), pages 1-17, January.
- Li Gao & Mingjing Huang & Wuping Zhang & Lei Qiao & Guofang Wang & Xumeng Zhang, 2021. "Comparative Study on Spatial Digital Mapping Methods of Soil Nutrients Based on Different Geospatial Technologies," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
- Li, Mengya & Kwan, Mei-Po & Hu, Wenyan & Li, Rui & Wang, Jun, 2023. "Examining the effects of station-level factors on metro ridership using multiscale geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 113(C).
- Duan Zhuang, 2006. "Spatial Dependence and Neighborhood Effects in Mortgage Lending: A Geographically Weighted Regression Approach," Working Paper 8571, USC Lusk Center for Real Estate.
- Moore, David & Webb, Amanda L., 2022. "Evaluating energy burden at the urban scale: A spatial regression approach in Cincinnati, Ohio," Energy Policy, Elsevier, vol. 160(C).
- Jack C. Yue & Ming-Huei Tu & Yin-Yee Leong, 2024. "A spatial analysis of the health and longevity of Taiwanese people," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 384-399, April.
- Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
- Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.
- Yongxin Liu & Yiting Wang & Yiwen Lin & Xiaoqing Ma & Shifa Guo & Qianru Ouyang & Caige Sun, 2023. "Habitat Quality Assessment and Driving Factors Analysis of Guangdong Province, China," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
- Wiktor Budziński & Danny Campbell & Mikołaj Czajkowski & Urška Demšar & Nick Hanley, 2018.
"Using Geographically Weighted Choice Models to Account for the Spatial Heterogeneity of Preferences,"
Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 606-626, September.
- Wiktor Budziński & Danny Campbell & Mikołaj Czajkowski & Urška Demšar & Nick Hanley, 2016. "Using geographically weighted choice models to account for spatial heterogeneity of preferences," Working Papers 2016-17, Faculty of Economic Sciences, University of Warsaw.
- Jay Mittal & Sweta Byahut, 2019. "Scenic landscapes, visual accessibility and premium values in a single family housing market: A spatial hedonic approach," Environment and Planning B, , vol. 46(1), pages 66-83, January.
More about this item
Keywords
Opioid prescribing rate; Spatial non-stationarity; Geographically weighted regression; Medicare Part D prescription drug event;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:poprpr:v:40:y:2021:i:2:d:10.1007_s11113-019-09566-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.