IDEAS home Printed from https://ideas.repec.org/a/kap/poprpr/v40y2021i2d10.1007_s11113-019-09566-7.html
   My bibliography  Save this article

Spatial Non-stationarity in Opioid Prescribing Rates: Evidence from Older Medicare Part D Beneficiaries

Author

Listed:
  • Seulki Kim

    (University at Albany, State University of New York)

  • Carla Shoff

    (Centers for Medicare & Medicaid Services)

  • Tse-Chuan Yang

    (University at Albany, State University of New York)

Abstract

Previous research that examined spatial patterns of opioid prescribing rates and factors associated with them has mainly relied on a global modeling perspective, overlooking the potential spatial non-stationarity embedded in these associations. In this study, we investigate whether there are spatially non-stationary associations between opioid prescribing rates and key characteristics of older Medicare Part D beneficiaries and their prescribers using several data sources from the Centers for Medicare and Medicaid Services. All measures are aggregated to the ZIP code-level and a total sample size of 18,126 ZIP codes is included in the analyses. Our descriptive results from geographically weighted regression and the Monte Carlo significance test suggest that most of the associations between the characteristics of beneficiaries and prescribers and opioid prescribing rates are spatially non-stationary. Our findings not only challenge the conventional analytic approach by highlighting the importance of a local modeling perspective in opioid prescribing research, but also offer nuanced insight into how opioid prescribing rates are related to possible determinants across space.

Suggested Citation

  • Seulki Kim & Carla Shoff & Tse-Chuan Yang, 2021. "Spatial Non-stationarity in Opioid Prescribing Rates: Evidence from Older Medicare Part D Beneficiaries," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 40(2), pages 127-136, April.
  • Handle: RePEc:kap:poprpr:v:40:y:2021:i:2:d:10.1007_s11113-019-09566-7
    DOI: 10.1007/s11113-019-09566-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11113-019-09566-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11113-019-09566-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio Páez & Takashi Uchida & Kazuaki Miyamoto, 2002. "A General Framework for Estimation and Inference of Geographically Weighted Regression Models: 1. Location-Specific Kernel Bandwidths and a Test for Locational Heterogeneity," Environment and Planning A, , vol. 34(4), pages 733-754, April.
    2. Grubesic, Tony H., 2008. "Zip codes and spatial analysis: Problems and prospects," Socio-Economic Planning Sciences, Elsevier, vol. 42(2), pages 129-149, June.
    3. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    4. Stephen Matthews & Tse-Chuan Yang, 2012. "Mapping the results of local statistics," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(6), pages 151-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sauer, Jeffery & Stewart, Kathleen, 2023. "Geographic information science and the United States opioid overdose crisis: A scoping review of methods, scales, and application areas," Social Science & Medicine, Elsevier, vol. 317(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexis Comber & Khanh Chi & Man Q Huy & Quan Nguyen & Binbin Lu & Hoang H Phe & Paul Harris, 2020. "Distance metric choice can both reduce and induce collinearity in geographically weighted regression," Environment and Planning B, , vol. 47(3), pages 489-507, March.
    2. Yanzhao Wang & Jianfei Cao, 2023. "Examining the Effects of Socioeconomic Development on Fine Particulate Matter (PM2.5) in China’s Cities Based on Spatial Autocorrelation Analysis and MGWR Model," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    3. Shichao Lu & Zhihua Zhang & M. James C. Crabbe & Prin Suntichaikul, 2024. "Effects of Urban Land-Use Planning on Housing Prices in Chiang Mai, Thailand," Land, MDPI, vol. 13(8), pages 1-13, July.
    4. Abdullah Al Saim & Mohamed H. Aly, 2022. "Machine Learning for Modeling Wildfire Susceptibility at the State Level: An Example from Arkansas, USA," Geographies, MDPI, vol. 2(1), pages 1-17, January.
    5. Jack C. Yue & Ming-Huei Tu & Yin-Yee Leong, 2024. "A spatial analysis of the health and longevity of Taiwanese people," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 384-399, April.
    6. Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.
    7. Wiktor Budziński & Danny Campbell & Mikołaj Czajkowski & Urška Demšar & Nick Hanley, 2018. "Using Geographically Weighted Choice Models to Account for the Spatial Heterogeneity of Preferences," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 606-626, September.
    8. Jay Mittal & Sweta Byahut, 2019. "Scenic landscapes, visual accessibility and premium values in a single family housing market: A spatial hedonic approach," Environment and Planning B, , vol. 46(1), pages 66-83, January.
    9. Tao Wang & Kai Zhang & Keliang Liu & Keke Ding & Wenwen Qin, 2023. "Spatial Heterogeneity and Scale Effects of Transportation Carbon Emission-Influencing Factors—An Empirical Analysis Based on 286 Cities in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    10. Junfeng Wang & Shaoyao Zhang & Wei Deng & Qianli Zhou, 2024. "Metropolitan Expansion and Migrant Population: Correlation Patterns and Influencing Factors in Chengdu, China," Land, MDPI, vol. 13(1), pages 1-20, January.
    11. Xin Lao & Hengyu Gu, 2020. "Unveiling various spatial patterns of determinants of hukou transfer intentions in China: A multi‐scale geographically weighted regression approach," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1860-1876, December.
    12. Stephen Matthews & Daniel M. Parker, 2013. "Progress in Spatial Demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(10), pages 271-312.
    13. Zhenbao Wang & Jiarui Song & Yuchen Zhang & Shihao Li & Jianlin Jia & Chengcheng Song, 2022. "Spatial Heterogeneity Analysis for Influencing Factors of Outbound Ridership of Subway Stations Considering the Optimal Scale Range of “7D” Built Environments," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    14. Benjamin T. Skinner, 2019. "Choosing College in the 2000s: An Updated Analysis Using the Conditional Logistic Choice Model," Research in Higher Education, Springer;Association for Institutional Research, vol. 60(2), pages 153-183, March.
    15. Jiansheng Qu & Lina Liu & Jingjing Zeng & Tek Narayan Maraseni & Zhiqiang Zhang, 2022. "City-Level Determinants of Household CO 2 Emissions per Person: An Empirical Study Based on a Large Survey in China," Land, MDPI, vol. 11(6), pages 1-14, June.
    16. Shijie Yang & Yunjia Wang & Rongqing Han & Yong Chang & Xihua Sun, 2021. "Spatial Heterogeneity of Factors Influencing CO 2 Emissions in China’s High-Energy-Intensive Industries," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    17. Allison C. Morgan & Nicholas LaBerge & Daniel B. Larremore & Mirta Galesic & Jennie E. Brand & Aaron Clauset, 2022. "Socioeconomic roots of academic faculty," Nature Human Behaviour, Nature, vol. 6(12), pages 1625-1633, December.
    18. Li Yue & Hongbo Zhao & Xiaoman Xu & Tianshun Gu & Zeting Jia, 2022. "Quantifying the Spatial Fragmentation Pattern and Its Influencing Factors of Urban Land Use: A Case Study of Pingdingshan City, China," Land, MDPI, vol. 11(5), pages 1-15, May.
    19. Khalid Al-Ahmadi & Ali Al-Zahrani, 2013. "NO 2 and Cancer Incidence in Saudi Arabia," IJERPH, MDPI, vol. 10(11), pages 1-19, November.
    20. Zhang, Wei & Li, Yuqing & Zheng, Caigui, 2023. "The distribution characteristics and driving mechanism of vacant land in Chengdu, China: A perspective of urban shrinkage and expansion," Land Use Policy, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:poprpr:v:40:y:2021:i:2:d:10.1007_s11113-019-09566-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.