Machine Learning for Modeling Wildfire Susceptibility at the State Level: An Example from Arkansas, USA
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chao Song & Mei-Po Kwan & Weiguo Song & Jiping Zhu, 2017. "A Comparison between Spatial Econometric Models and Random Forest for Modeling Fire Occurrence," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
- Antonio Páez & Takashi Uchida & Kazuaki Miyamoto, 2002. "A General Framework for Estimation and Inference of Geographically Weighted Regression Models: 1. Location-Specific Kernel Bandwidths and a Test for Locational Heterogeneity," Environment and Planning A, , vol. 34(4), pages 733-754, April.
- Ehsan Chowdhury & Quazi Hassan, 2013. "Use of remote sensing-derived variables in developing a forest fire danger forecasting system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 321-334, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Remzi Eker & Tunahan Çınar & İsmail Baysal & Abdurrahim Aydın, 2024. "Remote sensing and GIS-based inventory and analysis of the unprecedented 2021 forest fires in Türkiye’s history," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10687-10707, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
- Wiktor Budziński & Danny Campbell & Mikołaj Czajkowski & Urška Demšar & Nick Hanley, 2018.
"Using Geographically Weighted Choice Models to Account for the Spatial Heterogeneity of Preferences,"
Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 606-626, September.
- Wiktor Budziński & Danny Campbell & Mikołaj Czajkowski & Urška Demšar & Nick Hanley, 2016. "Using geographically weighted choice models to account for spatial heterogeneity of preferences," Working Papers 2016-17, Faculty of Economic Sciences, University of Warsaw.
- Xiaoping Zhou & Zhenyang Qin & Yingjie Zhang & Linyi Zhao & Yan Song, 2019. "Quantitative Estimation and Spatiotemporal Characteristic Analysis of Price Deviation in China's Housing Market," Sustainability, MDPI, vol. 11(24), pages 1-28, December.
- Wei, Chuan-Hua & Qi, Fei, 2012. "On the estimation and testing of mixed geographically weighted regression models," Economic Modelling, Elsevier, vol. 29(6), pages 2615-2620.
- Dawid Siwicki, 2021. "The Application of Machine Learning Algorithms for Spatial Analysis: Predicting of Real Estate Prices in Warsaw," Working Papers 2021-05, Faculty of Economic Sciences, University of Warsaw.
- Ana Sá & José Pereira & Martin Charlton & Bernardo Mota & Paulo Barbosa & A. Stewart Fotheringham, 2011. "The pyrogeography of sub-Saharan Africa: a study of the spatial non-stationarity of fire–environment relationships using GWR," Journal of Geographical Systems, Springer, vol. 13(3), pages 227-248, September.
- Sebastian Brandt & Wolfgang Maennig & Felix Richter, 2014. "Do Houses of Worship Affect Housing Prices? Evidence from Germany," Growth and Change, Wiley Blackwell, vol. 45(4), pages 549-570, December.
- Qingbin Wei & Lianjun Zhang & Wenbiao Duan & Zhen Zhen, 2019. "Global and Geographically and Temporally Weighted Regression Models for Modeling PM 2.5 in Heilongjiang, China from 2015 to 2018," IJERPH, MDPI, vol. 16(24), pages 1-20, December.
- Seulki Kim & Carla Shoff & Tse-Chuan Yang, 2021. "Spatial Non-stationarity in Opioid Prescribing Rates: Evidence from Older Medicare Part D Beneficiaries," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 40(2), pages 127-136, April.
- Faisal, Abdullah Al & Kafy, Abdulla - Al & Afroz, Farzana & Rahaman, Zullyadini A., 2023. "Exploring and forecasting spatial and temporal patterns of fire hazard risk in Nepal's tiger conservation zones," Ecological Modelling, Elsevier, vol. 476(C).
- Tom Kauko, 2009. "Classification of Residential Areas in the Three Largest Dutch Cities Using Multidimensional Data," Urban Studies, Urban Studies Journal Limited, vol. 46(8), pages 1639-1663, July.
- Geniaux, Ghislain & Martinetti, Davide, 2018. "A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 74-85.
- Mohamed-Salem Ahmed & Lionel Cucala & Michaël Genin, 2021. "Spatial autoregressive models for scan statistic," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-20, December.
- Duan Zhuang, 2006. "Spatial Dependence and Neighborhood Effects in Mortgage Lending: A Geographically Weighted Regression Approach," Working Paper 8571, USC Lusk Center for Real Estate.
- David C Wheeler, 2007. "Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression," Environment and Planning A, , vol. 39(10), pages 2464-2481, October.
- David C Wheeler, 2009. "Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso," Environment and Planning A, , vol. 41(3), pages 722-742, March.
- M. Bárcena & P. Menéndez & M. Palacios & F. Tusell, 2014. "Alleviating the effect of collinearity in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 16(4), pages 441-466, October.
- Moeltner, Klaus & Puri, Roshan & Johnston, Robert J. & Besedin, Elena & Balukas, Jessica & Le, Alyssa, 2022. "Locally Weighted Meta-Regression and Benefit Transfer," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322359, Agricultural and Applied Economics Association.
- Saeedeh Eskandari & Mahdis Amiri & Nitheshnirmal Sãdhasivam & Hamid Reza Pourghasemi, 2020. "Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 305-327, October.
- Jiao, Xiaoying & Li, Gang & Chen, Jason Li, 2020. "Forecasting international tourism demand: a local spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 83(C).
More about this item
Keywords
machine learning; random forest; fire susceptibility modeling; ordinary least squares regression; geographically weighted regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgeogr:v:2:y:2022:i:1:p:4-47:d:739028. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.