IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v26y2012i6.html
   My bibliography  Save this article

Mapping the results of local statistics

Author

Listed:
  • Stephen Matthews

    (Pennsylvania State University)

  • Tse-Chuan Yang

    (State University of New York at Albany)

Abstract

Background: The application of geographically weighted regression (GWR) - a local spatial statistical technique used to test for spatial nonstationarity - has grown rapidly in the social, health, and demographic sciences. GWR is a useful exploratory analytical tool that generates a set of location-specific parameter estimates which can be mapped and analysed to provide information on spatial nonstationarity in the relationships between predictors and the outcome variable. Objective: A major challenge to users of GWR methods is how best to present and synthesize the large number of mappable results, specifically the local parameter parameter estimates and local t-values, generated from local GWR models. We offer an elegant solution. Methods: This paper introduces a mapping technique to simultaneously display local parameter estimates and local t-values on one map based on the use of data selection and transparency techniques. We integrate GWR software and GIS software package (ArcGIS) and adapt earlier work in cartography on bivariate mapping. We compare traditional mapping strategies (i.e., side-by-side comparison and isoline overlay maps) with our method using an illustration focusing on US county infant mortality data. Conclusions: The resultant map design is more elegant than methods used to date. This type of map presentation can facilitate the exploration and interpretation of nonstationarity, focusing map reader attention on the areas of primary interest.

Suggested Citation

  • Stephen Matthews & Tse-Chuan Yang, 2012. "Mapping the results of local statistics," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 26(6), pages 151-166.
  • Handle: RePEc:dem:demres:v:26:y:2012:i:6
    DOI: 10.4054/DemRes.2012.26.6
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol26/6/26-6.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2012.26.6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cho, Seong-Hoon & Lambert, Dayton M. & Kim, Seung Gyu & Jung, Suhyun, 2009. "Extreme coefficients in Geographically Weighted Regression and their effects on mapping," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49117, Agricultural and Applied Economics Association.
    2. Manfred M. Fischer & Arthur Getis (ed.), 2010. "Handbook of Applied Spatial Analysis," Springer Books, Springer, number 978-3-642-03647-7, September.
    3. Kamar Ali & Mark D. Partridge & M. Rose Olfert, 2007. "Can Geographically Weighted Regressions Improve Regional Analysis and Policy Making?," International Regional Science Review, , vol. 30(3), pages 300-329, July.
    4. Dan-Lin Yu, 2006. "Spatially varying development mechanisms in the Greater Beijing Area: a geographically weighted regression investigation," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 40(1), pages 173-190, March.
    5. Partridge, Mark D. & Rickman, Dan S., 2005. "Persistent Pockets Of Extreme American Poverty: People Or Place Based?," Working Papers 18907, Oregon State University, Rural Poverty Research Center (RPRC).
    6. Danlin Yu & Yehua Dennis Wei & Changshan Wu, 2007. "Modeling Spatial Dimensions of Housing Prices in Milwaukee, WI," Environment and Planning B, , vol. 34(6), pages 1085-1102, December.
    7. C Brunsdon & A S Fotheringham & M Charlton, 1998. "Spatial Nonstationarity and Autoregressive Models," Environment and Planning A, , vol. 30(6), pages 957-973, June.
    8. Benson, Todd & Chamberlin, Jordan & Rhinehart, Ingrid, 2005. "An investigation of the spatial determinants of the local prevalence of poverty in rural Malawi," Food Policy, Elsevier, vol. 30(5-6), pages 532-550.
    9. David Wheeler & Michael Tiefelsdorf, 2005. "Multicollinearity and correlation among local regression coefficients in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 7(2), pages 161-187, June.
    10. Yefang Huang & Yee Leung, 2002. "Analysing regional industrialisation in Jiangsu province using geographically weighted regression," Journal of Geographical Systems, Springer, vol. 4(2), pages 233-249, June.
    11. Ernesto Calvo & Marcelo Escolar, 2003. "The Local Voter: A Geographically Weighted Approach to Ecological Inference," American Journal of Political Science, John Wiley & Sons, vol. 47(1), pages 189-204, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kubiszewski, Ida & Jarvis, Diane & Zakariyya, Nabeeh, 2019. "Spatial variations in contributors to life satisfaction: An Australian case study," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    2. Yoo Min Park & Gregory D. Kearney & Bennett Wall & Katherine Jones & Robert J. Howard & Ray H. Hylock, 2021. "COVID-19 Deaths in the United States: Shifts in Hot Spots over the Three Phases of the Pandemic and the Spatiotemporally Varying Impact of Pandemic Vulnerability," IJERPH, MDPI, vol. 18(17), pages 1-15, August.
    3. Greg Rybarczyk & Dorceta Taylor & Shannon Brines & Richard Wetzel, 2019. "A Geospatial Analysis of Access to Ethnic Food Retailers in Two Michigan Cities: Investigating the Importance of Outlet Type within Active Travel Neighborhoods," IJERPH, MDPI, vol. 17(1), pages 1-18, December.
    4. Wang, Yongcheng & Yamaguchi, Keita & Wong, Yiik Diew, 2020. "The multivalent nexus of redevelopment and heritage conservation: A mixed-methods study of the site-level public consultation of urban development in Macao," Land Use Policy, Elsevier, vol. 99(C).
    5. Xindong He & Xianmin Mai & Guoqiang Shen, 2020. "Poverty and Physical Geographic Factors: An Empirical Analysis of Sichuan Province Using the GWR Model," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    6. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    7. Jay Mittal & Sweta Byahut, 2019. "Scenic landscapes, visual accessibility and premium values in a single family housing market: A spatial hedonic approach," Environment and Planning B, , vol. 46(1), pages 66-83, January.
    8. Shijie Yang & Yunjia Wang & Rongqing Han & Yong Chang & Xihua Sun, 2021. "Spatial Heterogeneity of Factors Influencing CO 2 Emissions in China’s High-Energy-Intensive Industries," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    9. Elżbieta Antczak, 2020. "Regionally Divergent Patterns in Factors Affecting Municipal Waste Production: The Polish Perspective," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    10. Donghui Wang & Guangqing Chi, 2017. "Different places, different stories: A study of the spatial heterogeneity of county-level fertility in China," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(16), pages 493-526.
    11. Greg Rybarczyk & Richard R. Shaker, 2021. "Predicting Bicycle-on-Board Transit Choice in a University Environment," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    12. Zubairul Islam & Muthukumarasamy Ranganathan & Murugesan Bagyaraj & Sudhir Kumar Singh & Sandeep Kumar Gautam, 2022. "Multi-decadal groundwater variability analysis using geostatistical method for groundwater sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3146-3164, March.
    13. Vivian Yi-Ju Chen & Kiwoong Park & Feinuo Sun & Tse-Chuan Yang, 2022. "Assessing COVID-19 risk with temporal indices and geographically weighted ordinal logistic regression in US counties," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-16, April.
    14. Khalid Al-Ahmadi & Ali Al-Zahrani, 2013. "NO 2 and Cancer Incidence in Saudi Arabia," IJERPH, MDPI, vol. 10(11), pages 1-19, November.
    15. Lewandowska-Gwarda Karolina, 2014. "Spatial Analysis Of Foreign Migration In Poland In 2012 Using Geographically Weighted Regression," Comparative Economic Research, Sciendo, vol. 17(4), pages 137-154, December.
    16. Yanchuan Mou & Qingsong He & Bo Zhou, 2017. "Detecting the Spatially Non-Stationary Relationships between Housing Price and Its Determinants in China: Guide for Housing Market Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    17. Paul Atkinson & Catherine Porter & Ian Gregory & Brian Francis, 2017. "Spatial modelling of rural infant mortality and occupation in 19th-century Britain," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 36(44), pages 1337-1360.
    18. Ingram, Matthew C. & Marchesini da Costa, Marcelo, 2019. "Political geography of violence: Municipal politics and homicide in Brazil," World Development, Elsevier, vol. 124(C), pages 1-1.
    19. Jinghu Pan & Weiguo Wang & Junfeng Li, 2016. "Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1879-1899, April.
    20. Hui Yun Rebecca Neo & Nyuk Hien Wong & Marcel Ignatius & Chao Yuan & Yong Xu & Kai Cao, 2023. "Spatial analysis of public residential housing's electricity consumption in relation to urban landscape and building characteristics: A case study in Singapore," Energy & Environment, , vol. 34(2), pages 233-254, March.
    21. Seulki Kim & Carla Shoff & Tse-Chuan Yang, 2021. "Spatial Non-stationarity in Opioid Prescribing Rates: Evidence from Older Medicare Part D Beneficiaries," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 40(2), pages 127-136, April.
    22. Stephen Matthews & Daniel M. Parker, 2013. "Progress in Spatial Demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(10), pages 271-312.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kubiszewski, Ida & Jarvis, Diane & Zakariyya, Nabeeh, 2019. "Spatial variations in contributors to life satisfaction: An Australian case study," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    2. Löchl, Michael & Axhausen, Kay W., 2010. "Modelling hedonic residential rents for land use and transport simulation while considering spatial effects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(2), pages 39-63.
    3. Sven Müller, 2012. "Identifying spatial nonstationarity in German regional firm start-up data," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 32(2), pages 113-132, September.
    4. Yonghua Zou, 2015. "Re-examining the Neighborhood Distribution of Higher Priced Mortgage Lending: Global versus Local Methods," Growth and Change, Wiley Blackwell, vol. 46(4), pages 654-674, December.
    5. Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
    6. Stephen Matthews & Daniel M. Parker, 2013. "Progress in Spatial Demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(10), pages 271-312.
    7. Dziauddin, Mohd Faris, 2019. "Estimating land value uplift around light rail transit stations in Greater Kuala Lumpur: An empirical study based on geographically weighted regression (GWR)," Research in Transportation Economics, Elsevier, vol. 74(C), pages 10-20.
    8. Richard Shearmur & Philippe Apparicio & Pauline Lizion & Mario Polèse, 2007. "Space, Time, and Local Employment Growth: An Application of Spatial Regression Analysis," Growth and Change, Wiley Blackwell, vol. 38(4), pages 696-722, December.
    9. Kamar Ali & Mark D. Partridge & M. Rose Olfert, 2007. "Can Geographically Weighted Regressions Improve Regional Analysis and Policy Making?," International Regional Science Review, , vol. 30(3), pages 300-329, July.
    10. Ning Wang & Chang-Lin Mei & Xiao-Dong Yan, 2008. "Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique," Environment and Planning A, , vol. 40(4), pages 986-1005, April.
    11. López-Carr, David & Davis, Jason & Jankowska, Marta M. & Grant, Laura & López-Carr, Anna Carla & Clark, Matthew, 2012. "Space versus place in complex human–natural systems: Spatial and multi-level models of tropical land use and cover change (LUCC) in Guatemala," Ecological Modelling, Elsevier, vol. 229(C), pages 64-75.
    12. Antonio Páez & Steven Farber & David Wheeler, 2011. "A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships," Environment and Planning A, , vol. 43(12), pages 2992-3010, December.
    13. Wrenn, Douglas H. & Sam, Abdoul G., 2014. "Geographically and temporally weighted likelihood regression: Exploring the spatiotemporal determinants of land use change," Regional Science and Urban Economics, Elsevier, vol. 44(C), pages 60-74.
    14. Cho, Seong-Hoon & Lambert, Dayton M. & Kim, Seung Gyu & Jung, Suhyun, 2009. "Extreme coefficients in Geographically Weighted Regression and their effects on mapping," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49117, Agricultural and Applied Economics Association.
    15. Chih-Hao Wang & Na Chen, 2021. "A multi-objective optimization approach to balancing economic efficiency and equity in accessibility to multi-use paths," Transportation, Springer, vol. 48(4), pages 1967-1986, August.
    16. Diana Gutiérrez Posada & Fernando Rubiera Morollón & Ana Viñuela, 2018. "Ageing Places in an Ageing Country: The Local Dynamics of the Elderly Population in Spain," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 109(3), pages 332-349, July.
    17. Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.
    18. Hyunwoo Lim & Minyoung Park, 2019. "Modeling the Spatial Dimensions of Warehouse Rent Determinants: A Case Study of Seoul Metropolitan Area, South Korea," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    19. Carla Shoff & Tse-Chuan Yang, 2012. "Spatially varying predictors of teenage birth rates among counties in the United States," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(14), pages 377-418.
    20. Mauricio Sarrias, 2020. "Random Parameters and Spatial Heterogeneity using Rchoice in R," REGION, European Regional Science Association, vol. 7, pages 1-19.

    More about this item

    Keywords

    mapping; geographically weighted regression; nonstationarity; local statistics;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:26:y:2012:i:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.