IDEAS home Printed from https://ideas.repec.org/a/kap/jmgtgv/v27y2023i3d10.1007_s10997-021-09614-5.html
   My bibliography  Save this article

Financial ratios, corporate governance and bank-firm information: a Bayesian approach to predict SMEs’ default

Author

Listed:
  • Carmen Gallucci

    (University of Salerno, IPAG Business School)

  • Rosalia Santullli

    (University of Genoa
    IPAG Business School)

  • Michele Modina

    (University of Molise)

  • Vincenzo Formisano

    (University of Cassino and Southern Lazio)

Abstract

The paper aims to jointly combine three different categories of variables (financial ratios, corporate governance data and bank-firm information) to predict SMEs’ default. To this end, a merged longitudinal predictive model was applied to a sample of 973 Italian SMEs that are clients of 36 different co-operative banks. The collected data (for a total of 23 variables included in the model) relate to the years 2012–2014. The main findings reveal the high predictive power of leverage ratio, CEO tenure and ownership concentration, and the number of loans overdue for more than 180 days in the previous 12 months.

Suggested Citation

  • Carmen Gallucci & Rosalia Santullli & Michele Modina & Vincenzo Formisano, 2023. "Financial ratios, corporate governance and bank-firm information: a Bayesian approach to predict SMEs’ default," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(3), pages 873-892, September.
  • Handle: RePEc:kap:jmgtgv:v:27:y:2023:i:3:d:10.1007_s10997-021-09614-5
    DOI: 10.1007/s10997-021-09614-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10997-021-09614-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10997-021-09614-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Dietsch, 2004. "Should SME exposures be treated as retail or corporate exposures: a comparative analysis of probabilities of default and assets correlations in French and German SMEs," ULB Institutional Repository 2013/14164, ULB -- Universite Libre de Bruxelles.
    2. Giulio Bottazzi & Marco Grazzi & Angelo Secchi & Federico Tamagni, 2011. "Financial and economic determinants of firm default," Journal of Evolutionary Economics, Springer, vol. 21(3), pages 373-406, August.
    3. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    4. Adams, Renée B. & Ferreira, Daniel, 2009. "Women in the boardroom and their impact on governance and performance," Journal of Financial Economics, Elsevier, vol. 94(2), pages 291-309, November.
    5. Fidrmuc, Jarko & Hainz, Christa, 2010. "Default rates in the loan market for SMEs: Evidence from Slovakia," Economic Systems, Elsevier, vol. 34(2), pages 133-147, June.
    6. Berger, Allen N & Frame, W Scott & Miller, Nathan H, 2005. "Credit Scoring and the Availability, Price, and Risk of Small Business Credit," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(2), pages 191-222, April.
    7. Ono, Arito & Hasumi, Ryo & Hirata, Hideaki, 2014. "Differentiated use of small business credit scoring by relationship lenders and transactional lenders: Evidence from firm–bank matched data in Japan," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 371-380.
    8. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    9. Sanjeev Mittal & Pankaj Gupta & K. Jain, 2011. "Neural network credit scoring model for micro enterprise financing in India," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 3(3), pages 224-242, October.
    10. Manuel D. N. T. Oliveira & Fernando A. F. Ferreira & Guillermo O. Pérez-Bustamante Ilander & Marjan S. Jalali, 2017. "Integrating cognitive mapping and MCDA for bankruptcy prediction in small- and medium-sized enterprises," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 985-997, September.
    11. S-M Lin & J Ansell & G Andreeva, 2012. "Predicting default of a small business using different definitions of financial distress," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(4), pages 539-548, April.
    12. Lars Norden & Martin Weber, 2010. "Credit Line Usage, Checking Account Activity, and Default Risk of Bank Borrowers," The Review of Financial Studies, Society for Financial Studies, vol. 23(10), pages 3665-3699, October.
    13. Bergerès, Anne-Sophie & d'Astous, Philippe & Dionne, Georges, 2015. "Is there any dependence between consumer credit line utilization and default probability on a term loan? Evidence from bank-customer data," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 276-286.
    14. Yehning Chen & Rachel Huang & John Tsai & Larry Tzeng, 2015. "Soft Information and Small Business Lending," Journal of Financial Services Research, Springer;Western Finance Association, vol. 47(1), pages 115-133, February.
    15. Dietsch, Michel & Petey, Joel, 2002. "The credit risk in SME loans portfolios: Modeling issues, pricing, and capital requirements," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 303-322, March.
    16. Berger, Allen N & Udell, Gregory F, 1995. "Relationship Lending and Lines of Credit in Small Firm Finance," The Journal of Business, University of Chicago Press, vol. 68(3), pages 351-381, July.
    17. Kosmas Kosmidis & Antonios Stavropoulos, 2014. "Corporate failure diagnosis in SMEs," International Journal of Accounting & Information Management, Emerald Group Publishing Limited, vol. 22(1), pages 49-67, February.
    18. Bartoli, Francesca & Ferri, Giovanni & Murro, Pierluigi & Rotondi, Zeno, 2013. "Bank–firm relations and the role of Mutual Guarantee Institutions at the peak of the crisis," Journal of Financial Stability, Elsevier, vol. 9(1), pages 90-104.
    19. Ryo Hasumi & Hideaki Hirata, 2014. "Small Business Credit Scoring and Its Pitfalls: Evidence from Japan," Journal of Small Business Management, Taylor & Francis Journals, vol. 52(3), pages 555-568, July.
    20. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    21. Ciampi, Francesco, 2015. "Corporate governance characteristics and default prediction modeling for small enterprises. An empirical analysis of Italian firms," Journal of Business Research, Elsevier, vol. 68(5), pages 1012-1025.
    22. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    23. S Figini & P Giudici, 2011. "Statistical merging of rating models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1067-1074, June.
    24. Stewart Jones & David Johnstone & Roy Wilson, 2017. "Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 44(1-2), pages 3-34, January.
    25. Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
    26. Edmister, Robert O., 1972. "An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(2), pages 1477-1493, March.
    27. Apostolos G. Christopoulos & Ioannis G. Dokas & Petros Kalantonis & Theodora Koukkou, 2019. "Investigation of financial distress with a dynamic logit based on the linkage between liquidity and profitability status of listed firms," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1817-1829, October.
    28. Pompe, Paul P.M. & Bilderbeek, Jan, 2005. "The prediction of bankruptcy of small- and medium-sized industrial firms," Journal of Business Venturing, Elsevier, vol. 20(6), pages 847-868, November.
    29. Jesús Saurina & Carlos Trucharte, 2004. "The Impact of Basel II on Lending to Small- and Medium-Sized Firms: A Regulatory Policy Assessment Based on Spanish Credit Register Data," Journal of Financial Services Research, Springer;Western Finance Association, vol. 26(2), pages 121-144, October.
    30. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    31. Elsas, Ralf, 2005. "Empirical determinants of relationship lending," Journal of Financial Intermediation, Elsevier, vol. 14(1), pages 32-57, January.
    32. McKillop, Donal & French, Declan & Quinn, Barry & Sobiech, Anna L. & Wilson, John O.S., 2020. "Cooperative financial institutions: A review of the literature," International Review of Financial Analysis, Elsevier, vol. 71(C).
    33. Francesco Dainelli & Francesco Giunta & Fabrizio Cipollini, 2013. "Determinants of SME credit worthiness under Basel rules: the value of credit history information," PSL Quarterly Review, Economia civile, vol. 66(264), pages 21-47.
    34. Francesco Ciampi & Niccolò Gordini, 2013. "Small Enterprise Default Prediction Modeling through Artificial Neural Networks: An Empirical Analysis of Italian Small Enterprises," Journal of Small Business Management, Taylor & Francis Journals, vol. 51(1), pages 23-45, January.
    35. Dietsch, Michel & Petey, Joel, 2004. "Should SME exposures be treated as retail or corporate exposures? A comparative analysis of default probabilities and asset correlations in French and German SMEs," Journal of Banking & Finance, Elsevier, vol. 28(4), pages 773-788, April.
    36. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    37. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    38. Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
    39. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    40. Fábio Dias Duarte & Ana Paula Matias Gama & Mohamed Azzim Gulamhussen, 2018. "Defaults in bank loans to SMEs during the financial crisis," Small Business Economics, Springer, vol. 51(3), pages 591-608, October.
    41. Traczynski, Jeffrey, 2017. "Firm Default Prediction: A Bayesian Model-Averaging Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(3), pages 1211-1245, June.
    42. Yildirim, Alev, 2020. "The effect of relationship banking on firm efficiency and default risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    43. Jairaj Gupta & Andros Gregoriou & Tahera Ebrahimi, 2018. "Empirical comparison of hazard models in predicting SMEs failure," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 437-466, March.
    44. So Sohn & Yoon Kim, 2013. "Behavioral credit scoring model for technology-based firms that considers uncertain financial ratios obtained from relationship banking," Small Business Economics, Springer, vol. 41(4), pages 931-943, December.
    45. Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.
    46. Darush Yazdanfar, 2011. "Predicting bankruptcy among SMEs: evidence from Swedish firm-level data," International Journal of Entrepreneurship and Small Business, Inderscience Enterprises Ltd, vol. 14(4), pages 551-565.
    47. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    48. Petersen, Mitchell A & Rajan, Raghuram G, 1994. "The Benefits of Lending Relationships: Evidence from Small Business Data," Journal of Finance, American Finance Association, vol. 49(1), pages 3-37, March.
    49. Gul, Ferdinand A. & Srinidhi, Bin & Ng, Anthony C., 2011. "Does board gender diversity improve the informativeness of stock prices?," Journal of Accounting and Economics, Elsevier, vol. 51(3), pages 314-338, April.
    50. Edward I. Altman & Alessandro Giannozzi & Oliviero Roggi & Gabriele Sabato, 2013. "Building Sme rating: is it necessary for lenders to monitor financial statements of the borrowers?," BANCARIA, Bancaria Editrice, vol. 10, pages 54-71, October.
    51. El Kalak, Izidin & Hudson, Robert, 2016. "The effect of size on the failure probabilities of SMEs: An empirical study on the US market using discrete hazard model," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 135-145.
    52. Sanjeev Mittal & Pankaj Gupta & K. Jain, 2011. "Neural network credit scoring model for micro enterprise financing in India," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 3(3), pages 224-242, October.
    53. Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
    2. Modina, Michele & Pietrovito, Filomena & Gallucci, Carmen & Formisano, Vincenzo, 2023. "Predicting SMEs’ default risk: Evidence from bank-firm relationship data," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 254-268.
    3. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    4. Zedda, Stefano & Modina, Michele & Gallucci, Carmen, 2024. "Cooperative credit banks and sustainability: Towards a social credit scoring," Research in International Business and Finance, Elsevier, vol. 68(C).
    5. Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
    6. Mohammad S. Uddin & Guotai Chi & Mazin A. M. Al Janabi & Tabassum Habib, 2022. "Leveraging random forest in micro‐enterprises credit risk modelling for accuracy and interpretability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3713-3729, July.
    7. Cathcart, Lara & Dufour, Alfonso & Rossi, Ludovico & Varotto, Simone, 2020. "The differential impact of leverage on the default risk of small and large firms," Journal of Corporate Finance, Elsevier, vol. 60(C).
    8. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    9. Stefano Filomeni & Udichibarna Bose & Anastasios Megaritis & Athanasios Triantafyllou, 2024. "Can market information outperform hard and soft information in predicting corporate defaults?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3567-3592, July.
    10. Ciampi, Francesco, 2015. "Corporate governance characteristics and default prediction modeling for small enterprises. An empirical analysis of Italian firms," Journal of Business Research, Elsevier, vol. 68(5), pages 1012-1025.
    11. Michal Karas & Mária Režòáková, 2021. "The role of financial constraint factors in predicting SME default," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 859-883, December.
    12. Alam, Nurul & Gao, Junbin & Jones, Stewart, 2021. "Corporate failure prediction: An evaluation of deep learning vs discrete hazard models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    13. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    14. Ken Li, 2024. "Liquidity ratios and corporate failures," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 1111-1134, March.
    15. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    16. Tingqiang Chen & Suyang Wang, 2023. "Incomplete information model of credit default of micro and small enterprises," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2956-2974, July.
    17. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    18. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    19. Jairaj Gupta & Nicholas Wilson & Andros Gregoriou & Jerome Healy, 2014. "The value of operating cash flow in modelling credit risk for SMEs," Applied Financial Economics, Taylor & Francis Journals, vol. 24(9), pages 649-660, May.
    20. Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jmgtgv:v:27:y:2023:i:3:d:10.1007_s10997-021-09614-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.