Predicting default of a small business using different definitions of financial distress
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gupta, Jairaj & Gregoriou, Andros, 2018. "Impact of market-based finance on SMEs failure," Economic Modelling, Elsevier, vol. 69(C), pages 13-25.
- Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
- Carmen Gallucci & Rosalia Santullli & Michele Modina & Vincenzo Formisano, 2023. "Financial ratios, corporate governance and bank-firm information: a Bayesian approach to predict SMEs’ default," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(3), pages 873-892, September.
- Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
- Xiaoting Wei & Cameron Truong & Viet Do, 2020. "When are dividend increases bad for corporate bonds?," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1295-1326, June.
- Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
- Silvia Figini & Roberto Savona & Marika Vezzoli, 2016. "Corporate Default Prediction Model Averaging: A Normative Linear Pooling Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(1-2), pages 6-20, January.
- Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
- Stefano Filomeni & Udichibarna Bose & Anastasios Megaritis & Athanasios Triantafyllou, 2024. "Can market information outperform hard and soft information in predicting corporate defaults?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3567-3592, July.
- Raffaella Calabrese & Galina Andreeva & Jake Ansell, 2019. "“Birds of a Feather” Fail Together: Exploring the Nature of Dependency in SME Defaults," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 71-84, January.
- Andreeva, Galina & Calabrese, Raffaella & Osmetti, Silvia Angela, 2016.
"A comparative analysis of the UK and Italian small businesses using Generalised Extreme Value models,"
European Journal of Operational Research, Elsevier, vol. 249(2), pages 506-516.
- Galina Andreeva & Raffaella Calabrese & Silvia Angela Osmetti, 2014. "A comparative analysis of the UK and Italian small businesses using Generalised Extreme Value models," Papers 1412.5351, arXiv.org.
- Tingqiang Chen & Suyang Wang, 2023. "Incomplete information model of credit default of micro and small enterprises," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2956-2974, July.
- Georgios Marinakos & Sophia Daskalaki & Theodoros Ntrinias, 2014. "Defensive financial decisions support for retailers in Greek pharmaceutical industry," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(3), pages 525-551, September.
- Arvind Shrivastava & Kuldeep Kumar & Nitin Kumar, 2018. "Business Distress Prediction Using Bayesian Logistic Model for Indian Firms," Risks, MDPI, vol. 6(4), pages 1-15, October.
- Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
- Pranith K. Roy & Krishnendu Shaw, 2023. "A credit scoring model for SMEs using AHP and TOPSIS," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 372-391, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:63:y:2012:i:4:p:539-548. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.