IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v41y2022i5p956-979.html
   My bibliography  Save this article

Corporate failure prediction using threshold‐based models

Author

Listed:
  • David Veganzones

Abstract

Corporate failure prediction literature indicates that models' performance depends on more than the complexity of the prediction method. Recent advances cite the relevance of sampling approaches to model performance. Therefore, this study proposes a novel approach that implements threshold models for corporate failure prediction efforts. Threshold models estimate asymptotically conservative confidence regions, in which the samples are split by size. Then, single‐based classifiers and a combination of multiple classifiers are employed in each region to estimate the prediction accuracy. This article offers a comparison of the proposed threshold‐based corporate failure model with two benchmark models, previously used in studies in the same context. The empirical results show that the proposed threshold‐based model clearly outperforms conventional models, in particular with the combination of multiple classifiers. The superiority of the threshold‐based model stems from its ability to discern failed firms, which represent the most important class in financial terms. This study thus provides initial evidence of the utility of threshold models in corporate failure prediction efforts.

Suggested Citation

  • David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
  • Handle: RePEc:wly:jforec:v:41:y:2022:i:5:p:956-979
    DOI: 10.1002/for.2842
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2842
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katsuyuki Tanaka & Takuo Higashide & Takuji Kinkyo & Shigeyuki Hamori, 2019. "Analyzing Industry‐Level Vulnerability By Predicting Financial Bankruptcy," Economic Inquiry, Western Economic Association International, vol. 57(4), pages 2017-2034, October.
    2. Loredana Cultrera & Xavier Brédart, 2016. "Bankruptcy prediction: the case of Belgian SMEs," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 15(1), pages 101-119, February.
    3. Dang, Chongyu & (Frank) Li, Zhichuan & Yang, Chen, 2018. "Measuring firm size in empirical corporate finance," Journal of Banking & Finance, Elsevier, vol. 86(C), pages 159-176.
    4. Montserrat Manzaneque & Domingo GarcíA‐Pérez‐De‐Lema & Marcos Antón Renart, 2015. "Bootstrap Replacement to Validate the Influence of the Economic Cycle on the Structure and the Accuracy Level of Business Failure Prediction Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(4), pages 275-289, July.
    5. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    6. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    7. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    8. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    9. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    10. du Jardin, Philippe & Séverin, Eric, 2012. "Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time," European Journal of Operational Research, Elsevier, vol. 221(2), pages 378-396.
    11. Zoričák, Martin & Gnip, Peter & Drotár, Peter & Gazda, Vladimír, 2020. "Bankruptcy prediction for small- and medium-sized companies using severely imbalanced datasets," Economic Modelling, Elsevier, vol. 84(C), pages 165-176.
    12. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    13. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    14. Dean Fantazzini & Silvia Figini, 2009. "Random Survival Forests Models for SME Credit Risk Measurement," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 29-45, March.
    15. Beck, Thorsten & Demirgüç-Kunt, Asli & Maksimovic, Vojislav, 2008. "Financing patterns around the world: Are small firms different?," Journal of Financial Economics, Elsevier, vol. 89(3), pages 467-487, September.
    16. Olof Brunninge & Mattias Nordqvist & Johan Wiklund, 2007. "Corporate Governance and Strategic Change in SMEs: The Effects of Ownership, Board Composition and Top Management Teams," Small Business Economics, Springer, vol. 29(3), pages 295-308, October.
    17. Hanas Cader & John Leatherman, 2011. "Small business survival and sample selection bias," Small Business Economics, Springer, vol. 37(2), pages 155-165, September.
    18. Umar Farooq & Muhammad Ali Jibran Qamar, 2019. "Predicting multistage financial distress: Reflections on sampling, feature and model selection criteria," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(7), pages 632-648, November.
    19. Linck, James S. & Netter, Jeffry M. & Yang, Tina, 2008. "The determinants of board structure," Journal of Financial Economics, Elsevier, vol. 87(2), pages 308-328, February.
    20. Kim, Hong Sik & Sohn, So Young, 2010. "Support vector machines for default prediction of SMEs based on technology credit," European Journal of Operational Research, Elsevier, vol. 201(3), pages 838-846, March.
    21. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    22. Edward I. Altman & Gabriele Sabato, 2013. "MODELING CREDIT RISK FOR SMEs: EVIDENCE FROM THE US MARKET," World Scientific Book Chapters, in: Oliviero Roggi & Edward I Altman (ed.), Managing and Measuring Risk Emerging Global Standards and Regulations After the Financial Crisis, chapter 9, pages 251-279, World Scientific Publishing Co. Pte. Ltd..
    23. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    24. El Kalak, Izidin & Hudson, Robert, 2016. "The effect of size on the failure probabilities of SMEs: An empirical study on the US market using discrete hazard model," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 135-145.
    25. Mateev, Miroslav & Poutziouris, Panikkos & Ivanov, Konstantin, 2013. "On the determinants of SME capital structure in Central and Eastern Europe: A dynamic panel analysis," Research in International Business and Finance, Elsevier, vol. 27(1), pages 28-51.
    26. Ciampi, Francesco, 2015. "Corporate governance characteristics and default prediction modeling for small enterprises. An empirical analysis of Italian firms," Journal of Business Research, Elsevier, vol. 68(5), pages 1012-1025.
    27. P. Du Jardin & E. Séverin, 2012. "Forecasting financial failure using a Kohonen map: a comparative study to improve bankruptcy model over time," Post-Print hal-00801853, HAL.
    28. Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veganzones, David & Séverin, Eric & Chlibi, Souhir, 2023. "Influence of earnings management on forecasting corporate failure," International Journal of Forecasting, Elsevier, vol. 39(1), pages 123-143.
    2. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    3. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    4. Xavier Brédart & Eric Séverin & David Veganzones, 2021. "Human resources and corporate failure prediction modeling: Evidence from Belgium," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1325-1341, November.
    5. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    6. Ben Jabeur, Sami & Serret, Vanessa, 2023. "Bankruptcy prediction using fuzzy convolutional neural networks," Research in International Business and Finance, Elsevier, vol. 64(C).
    7. Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 199-244, June.
    8. Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
    9. Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    10. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    11. Eric Séverin & David Veganzones, 2021. "Can earnings management information improve bankruptcy prediction models?," Annals of Operations Research, Springer, vol. 306(1), pages 247-272, November.
    12. Juraini Zainol Abidin & Nur Adiana Hiau Abdullah & Karren Lee-Hwei Khaw, 2020. "Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models," Capital Markets Review, Malaysian Finance Association, vol. 28(2), pages 29-41.
    13. Frieda Rikkers & Andre E. Thibeault, 2009. "A Structural form Default Prediction Model for SMEs, Evidence from the Dutch Market," Multinational Finance Journal, Multinational Finance Journal, vol. 13(3-4), pages 229-264, September.
    14. Keijo Kohv & Oliver Lukason, 2021. "What Best Predicts Corporate Bank Loan Defaults? An Analysis of Three Different Variable Domains," Risks, MDPI, vol. 9(2), pages 1-19, January.
    15. Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
    16. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2021. "A transformer-based model for default prediction in mid-cap corporate markets," Papers 2111.09902, arXiv.org, revised Apr 2023.
    17. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    18. Korangi, Kamesh & Mues, Christophe & Bravo, Cristián, 2023. "A transformer-based model for default prediction in mid-cap corporate markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 306-320.
    19. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    20. Douglas, Ella & Lont, David & Scott, Tom, 2014. "Finance company failure in New Zealand during 2006–2009: Predictable failures?," Journal of Contemporary Accounting and Economics, Elsevier, vol. 10(3), pages 277-295.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:41:y:2022:i:5:p:956-979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.