IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v45y2015i4p845-869.html
   My bibliography  Save this article

Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?

Author

Listed:
  • Jairaj Gupta
  • Andros Gregoriou
  • Jerome Healy

Abstract

A huge diversity exists within the broad category of small and medium size enterprises (SMEs). They differ widely in their capital structure, firm size, access to external finance, management style, numbers of employees etc. We contribute to the literature by acknowledging this diversity while modeling credit risk for them, using a relatively large UK database, covering the analysis period between 2000 and 2009. Our analysis partially employs the definition provided by the European Union to distinguish between ‘micro’, ‘small’, and ‘medium’ sized firms. We use both financial and non-financial information to predict firm’s failure hazard. We estimate separate hazard models for each sub-category of SMEs, and compare their performance with a SMEs hazard model including all the three sub-categories. We test our hypotheses using discrete-time duration-dependent hazard rate modelling techniques, which controls for both macro-economic conditions and survival time. Our test results strongly highlight the differences in the credit risk attributes of ‘micro’ firms and SMEs, while it does not support the need to consider ‘small’ and ‘medium’ firms’ category separately while modelling credit risk for them, as almost the same sets of explanatory variables affect the failure hazard of SMEs, ‘small’ and ‘medium’ firms. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Jairaj Gupta & Andros Gregoriou & Jerome Healy, 2015. "Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter?," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 845-869, November.
  • Handle: RePEc:kap:rqfnac:v:45:y:2015:i:4:p:845-869
    DOI: 10.1007/s11156-014-0458-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11156-014-0458-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11156-014-0458-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan-Henning Trustorff & Paul Konrad & Jens Leker, 2011. "Credit risk prediction using support vector machines," Review of Quantitative Finance and Accounting, Springer, vol. 36(4), pages 565-581, May.
    2. Jianguo Chen & Ben R. Marshall & Jenny Zhang & Siva Ganesh, 2006. "Financial Distress Prediction in China," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 317-336.
    3. Anderson, Raymond, 2007. "The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation," OUP Catalogue, Oxford University Press, number 9780199226405.
    4. di Giovanni, Julian & Levchenko, Andrei A. & Rancière, Romain, 2011. "Power laws in firm size and openness to trade: Measurement and implications," Journal of International Economics, Elsevier, vol. 85(1), pages 42-52, September.
    5. Wikil Kwak & Yong Shi & Gang Kou, 2012. "Bankruptcy prediction for Korean firms after the 1997 financial crisis: using a multiple criteria linear programming data mining approach," Review of Quantitative Finance and Accounting, Springer, vol. 38(4), pages 441-453, May.
    6. Koshy, Perumal & Prasad, V.N, 2007. "Small and Micro Enterprises: A tool in the fight against poverty," MPRA Paper 22827, University Library of Munich, Germany.
    7. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    8. Bates, Timothy, 2005. "Analysis of young, small firms that have closed: delineating successful from unsuccessful closures," Journal of Business Venturing, Elsevier, vol. 20(3), pages 343-358, May.
    9. Grunert, Jens & Norden, Lars & Weber, Martin, 2005. "The role of non-financial factors in internal credit ratings," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 509-531, February.
    10. de Mel, Suresh & McKenzie, David & Woodruff, Christopher, 2009. "Innovative Firms or Innovative Owners? Determinants of Innovation in Micro, Small, and Medium Enterprises," IZA Discussion Papers 3962, Institute of Labor Economics (IZA).
    11. Beck, Thorsten & Demirguc-Kunt, Asli & Laeven, Luc & Maksimovic, Vojislav, 2006. "The determinants of financing obstacles," Journal of International Money and Finance, Elsevier, vol. 25(6), pages 932-952, October.
    12. Nicoletta Batini & Young-Bae Kim & Paul Levine & Emanuela Lotti, 2009. "Informal Labour and Credit Markets: A Survey," School of Economics Discussion Papers 0609, School of Economics, University of Surrey.
    13. Wu, Chunchi & Wang, Xu-Ming, 2000. "A Neural Network Approach for Analyzing Small Business Lending Decisions," Review of Quantitative Finance and Accounting, Springer, vol. 15(3), pages 259-276, November.
    14. Mateev, Miroslav & Poutziouris, Panikkos & Ivanov, Konstantin, 2013. "On the determinants of SME capital structure in Central and Eastern Europe: A dynamic panel analysis," Research in International Business and Finance, Elsevier, vol. 27(1), pages 28-51.
    15. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    16. Hwang, Ruey-Ching, 2012. "A varying-coefficient default model," International Journal of Forecasting, Elsevier, vol. 28(3), pages 675-688.
    17. Edmister, Robert O., 1972. "An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(2), pages 1477-1493, March.
    18. Francisco Sogorb-Mira, 2005. "How SME Uniqueness Affects Capital Structure: Evidence From A 1994–1998 Spanish Data Panel," Small Business Economics, Springer, vol. 25(5), pages 447-457, December.
    19. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    20. Chae Woo Nam & Tong Suk Kim & Nam Jung Park & Hoe Kyung Lee, 2008. "Bankruptcy prediction using a discrete-time duration model incorporating temporal and macroeconomic dependencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 493-506.
    21. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    22. Edward I. Altman & Gabriele Sabato, 2013. "MODELING CREDIT RISK FOR SMEs: EVIDENCE FROM THE US MARKET," World Scientific Book Chapters, in: Oliviero Roggi & Edward I Altman (ed.), Managing and Measuring Risk Emerging Global Standards and Regulations After the Financial Crisis, chapter 9, pages 251-279, World Scientific Publishing Co. Pte. Ltd..
    23. Thorsten Beck & Asli Demirgüç‐Kunt & Vojislav Maksimovic, 2005. "Financial and Legal Constraints to Growth: Does Firm Size Matter?," Journal of Finance, American Finance Association, vol. 60(1), pages 137-177, February.
    24. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    25. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    26. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    27. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    28. Anne Marie Knott & Hart E. Posen, 2005. "Is failure good?," Strategic Management Journal, Wiley Blackwell, vol. 26(7), pages 617-641, July.
    29. Ruey-Ching Hwang & K. F. Cheng & Jack C. Lee, 2007. "A semiparametric method for predicting bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 317-342.
    30. Meghana Ayyagari & Thorsten Beck & Asli Demirguc-Kunt, 2007. "Small and Medium Enterprises Across the Globe," Small Business Economics, Springer, vol. 29(4), pages 415-434, December.
    31. P. Holmes & A. Hunt & I. Stone, 2010. "An analysis of new firm survival using a hazard function," Applied Economics, Taylor & Francis Journals, vol. 42(2), pages 185-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Kalak, Izidin & Hudson, Robert, 2016. "The effect of size on the failure probabilities of SMEs: An empirical study on the US market using discrete hazard model," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 135-145.
    2. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    3. Jairaj Gupta & Nicholas Wilson & Andros Gregoriou & Jerome Healy, 2014. "The value of operating cash flow in modelling credit risk for SMEs," Applied Financial Economics, Taylor & Francis Journals, vol. 24(9), pages 649-660, May.
    4. Evangelos C. Charalambakis & Ian Garrett, 2016. "On the prediction of financial distress in developed and emerging markets: Does the choice of accounting and market information matter? A comparison of UK and Indian Firms," Review of Quantitative Finance and Accounting, Springer, vol. 47(1), pages 1-28, July.
    5. Evangelos C. Charalambakis & Ian Garrett, 2019. "On corporate financial distress prediction: What can we learn from private firms in a developing economy? Evidence from Greece," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 467-491, February.
    6. Michal Karas & Mária Režòáková, 2021. "The role of financial constraint factors in predicting SME default," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 859-883, December.
    7. Cathcart, Lara & Dufour, Alfonso & Rossi, Ludovico & Varotto, Simone, 2020. "The differential impact of leverage on the default risk of small and large firms," Journal of Corporate Finance, Elsevier, vol. 60(C).
    8. Filipe, Sara Ferreira & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Forecasting distress in European SME portfolios," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 112-135.
    9. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    10. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    11. Gupta, Jairaj & Wilson, Nicholas & Gregoriou, Andros & Healy, Jerome, 2014. "The effect of internationalisation on modelling credit risk for SMEs: Evidence from UK market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 397-413.
    12. Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    13. Antonio Blanco-Oliver & Ana Irimia-Dieguez & María Oliver-Alfonso & Nicholas Wilson, 2015. "Systemic Sovereign Risk and Asset Prices: Evidence from the CDS Market, Stressed European Economies and Nonlinear Causality Tests," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(2), pages 144-166, April.
    14. Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
    15. Alam, Nurul & Gao, Junbin & Jones, Stewart, 2021. "Corporate failure prediction: An evaluation of deep learning vs discrete hazard models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    16. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    17. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    18. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    19. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    20. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.

    More about this item

    Keywords

    Bankruptcy prediction; Discrete-time hazard model; Time-varying covariate; Duration-dependent hazard rate; SME; Small and medium enterprises; G33;
    All these keywords.

    JEL classification:

    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:45:y:2015:i:4:p:845-869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.