IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v63y2024i4d10.1007_s10614-023-10374-7.html
   My bibliography  Save this article

Valuations of Variance and Volatility Swaps Under Double Heston Jump-Diffusion Model With Approximative Fractional Stochastic Volatility

Author

Listed:
  • Ke Wang

    (Southwestern University of Finance and Economics)

  • Xunxiang Guo

    (Southwestern University of Finance and Economics)

Abstract

In this paper, we study the variance and volatility swaps pricing problem under the framework of double Heston jump diffusion model with approximative fractional stochastic volatility. The pricing formulas of discretely-sampled variance and volatility swaps are obtained by deriving the characteristic function and solving the governing partial integro-differential equations(PIDEs). We also obtain the limits of discretely-sampled variance and volatility swaps pricing formulas, which are the pricing formulas of continuously-sampled variance and volatility swaps. Finally, the effectiveness of the pricing formula is illustrated by comparing with some existing works, and the influence of approximation factor and Hurst parameter variation on the prices of swaps are studied.

Suggested Citation

  • Ke Wang & Xunxiang Guo, 2024. "Valuations of Variance and Volatility Swaps Under Double Heston Jump-Diffusion Model With Approximative Fractional Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1543-1573, April.
  • Handle: RePEc:kap:compec:v:63:y:2024:i:4:d:10.1007_s10614-023-10374-7
    DOI: 10.1007/s10614-023-10374-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10374-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10374-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    2. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    3. Mark Broadie & Ashish Jain, 2008. "The Effect Of Jumps And Discrete Sampling On Volatility And Variance Swaps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(08), pages 761-797.
    4. Robert Elliott & Tak Kuen Siu & Leunglung Chan, 2007. "Pricing Volatility Swaps Under Heston's Stochastic Volatility Model with Regime Switching," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 41-62.
    5. Mrázek, Milan & Pospíšil, Jan & Sobotka, Tomáš, 2016. "On calibration of stochastic and fractional stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1036-1046.
    6. Thomas Little & Vijay Pant, 2002. "A Finite Difference Method For The Valuation Of Variance Swaps," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume III), chapter 12, pages 275-295, World Scientific Publishing Co. Pte. Ltd..
    7. Recchioni, Maria Cristina & Iori, Giulia & Tedeschi, Gabriele & Ouellette, Michelle S., 2021. "The complete Gaussian kernel in the multi-factor Heston model: Option pricing and implied volatility applications," European Journal of Operational Research, Elsevier, vol. 293(1), pages 336-360.
    8. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    9. Alireza Javaheri & Paul Wilmott & Espen Haug, 2004. "GARCH and Volatility swaps," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 589-595.
    10. Kim, See-Woo & Kim, Jeong-Hoon, 2019. "Variance swaps with double exponential Ornstein-Uhlenbeck stochastic volatility," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 149-169.
    11. Wendong Zheng & Yue Kuen Kwok, 2014. "Closed Form Pricing Formulas For Discretely Sampled Generalized Variance Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 855-881, October.
    12. See-Woo Kim & Jeong-Hoon Kim, 2020. "Volatility and variance swaps and options in the fractional SABR model," The European Journal of Finance, Taylor & Francis Journals, vol. 26(17), pages 1725-1745, November.
    13. Grunbichler, Andreas & Longstaff, Francis A., 1996. "Valuing futures and options on volatility," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 985-1001, July.
    14. Chi Hung Yuen & Wendong Zheng & Yue Kuen Kwok, 2015. "Pricing Exotic Discrete Variance Swaps under the 3/2-Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 421-449, November.
    15. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    16. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ah-Reum Han & Jeong-Hoon Kim & See-Woo Kim, 2021. "Variance Swaps with Deterministic and Stochastic Correlations," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1059-1092, April.
    2. Wang, Ke & Guo, Xun-xiang & Zhang, Hong-yu, 2024. "Valuations of generalized variance swaps under the jump–diffusion model with stochastic liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    3. Weiyi Liu & Song‐Ping Zhu, 2019. "Pricing variance swaps under the Hawkes jump‐diffusion process," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 635-655, June.
    4. Zhu, Song-Ping & Lian, Guang-Hua, 2015. "Pricing forward-start variance swaps with stochastic volatility," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 920-933.
    5. Ying Chang & Yiming Wang & Sumei Zhang, 2021. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility," Mathematics, MDPI, vol. 9(2), pages 1-10, January.
    6. Wu, Bin & Chen, Pengzhan & Ye, Wuyi, 2024. "Variance swaps with mean reversion and multi-factor variance," European Journal of Operational Research, Elsevier, vol. 315(1), pages 191-212.
    7. Min-Ku Lee & See-Woo Kim & Jeong-Hoon Kim, 2022. "Variance Swaps Under Multiscale Stochastic Volatility of Volatility," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 39-64, March.
    8. Sha Lin & Xin-Jiang He, 2022. "Analytically Pricing European Options under a New Two-Factor Heston Model with Regime Switching," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1069-1085, March.
    9. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    10. Kim, Hyun-Gyoon & Kim, See-Woo & Kim, Jeong-Hoon, 2024. "Variance and volatility swaps and options under the exponential fractional Ornstein–Uhlenbeck model," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    11. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    12. Youngin Yoon & Jeong-Hoon Kim, 2023. "A Closed Form Solution for Pricing Variance Swaps Under the Rescaled Double Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 429-450, January.
    13. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    14. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    15. Song-Ping Zhu & Guang-Hua Lian, 2018. "On the Convexity Correction Approximation in Pricing Volatility Swaps and VIX Futures," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 383-401, November.
    16. Kim, See-Woo & Kim, Jeong-Hoon, 2019. "Variance swaps with double exponential Ornstein-Uhlenbeck stochastic volatility," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 149-169.
    17. Ben-Zhang Yang & Jia Yue & Nan-Jing Huang, 2019. "Equilibrium Price Of Variance Swaps Under Stochastic Volatility With Lévy Jumps And Stochastic Interest Rate," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-33, June.
    18. Yuecai Han & Xudong Zheng, 2022. "Approximate Pricing of Derivatives Under Fractional Stochastic Volatility Model," Papers 2210.15453, arXiv.org.
    19. Ben-zhang Yang & Jia Yue & Nan-jing Huang, 2017. "Variance swaps under L\'{e}vy process with stochastic volatility and stochastic interest rate in incomplete markets," Papers 1712.10105, arXiv.org, revised Mar 2018.
    20. Cao, Jiling & Lian, Guanghua & Roslan, Teh Raihana Nazirah, 2016. "Pricing variance swaps under stochastic volatility and stochastic interest rate," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 72-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:63:y:2024:i:4:d:10.1007_s10614-023-10374-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.