IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v486y2025ics0096300324004909.html
   My bibliography  Save this article

Analytically pricing volatility options and capped/floored volatility swaps with nonlinear payoffs in discrete observation case under the Merton jump-diffusion model driven by a nonhomogeneous Poisson process

Author

Listed:
  • Rujivan, Sanae

Abstract

In this paper, we introduce novel analytical solutions for valuating volatility derivatives, including volatility options and capped/floored volatility swaps, employing discrete sampling within the framework of the Merton jump-diffusion model, which is driven by a nonhomogeneous Poisson process. The absence of a comprehensive understanding of the probability distribution characterizing the realized variance has historically impeded the development of a robust analytical valuation approach for such instruments. Through the application of the cumulative distribution function of the realized variance conditional on Poisson jumps, we have derived explicit expectations for the derivative payoffs articulated as functions of the extremum values of the square root of the realized variance. We delineate precise pricing structures for an array of instruments, encompassing variance and volatility swaps, variance and volatility options, and their respective capped and floored variations, alongside establishing put-call parity and relationships for capped and floored positions. Complementing the theoretical advancements, we substantiate the practical efficacy and precision of our solutions via Monte Carlo simulations, articulated through multiple numerical examples. Conclusively, our analysis extends to the quantification of jump impacts on the fair strike prices of volatility derivatives with nonlinear payoffs, facilitated by our analytic pricing expressions.

Suggested Citation

  • Rujivan, Sanae, 2025. "Analytically pricing volatility options and capped/floored volatility swaps with nonlinear payoffs in discrete observation case under the Merton jump-diffusion model driven by a nonhomogeneous Poisson," Applied Mathematics and Computation, Elsevier, vol. 486(C).
  • Handle: RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324004909
    DOI: 10.1016/j.amc.2024.129029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324004909
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324004909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.