Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kim, Kyong-Hui & Yun, Sim & Kim, Nam-Ung & Ri, Ju-Hyuang, 2019. "Pricing formula for European currency option and exchange option in a generalized jump mixed fractional Brownian motion with time-varying coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 215-231.
- S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
- Wang, Xiao-Tian, 2010. "Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 438-444.
- Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997.
"Empirical Performance of Alternative Option Pricing Models,"
Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
- Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm54, Yale School of Management.
- Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
- Peter Christoffersen & Steven Heston & Kris Jacobs, 2009.
"The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well,"
Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
- Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well," CREATES Research Papers 2009-34, Department of Economics and Business Economics, Aarhus University.
- Kang, Jian-hao & Yang, Ben-zhang & Huang, Nan-jing, 2019. "Pricing of FX options in the MPT/CIR jump-diffusion model with approximative fractional stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 532(C).
- John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005.
"A Theory Of The Term Structure Of Interest Rates,"
World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164,
World Scientific Publishing Co. Pte. Ltd..
- Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
- Zhong, Yinhui & Bao, Qunfang & Li, Shenghong, 2015. "FX options pricing in logarithmic mean-reversion jump-diffusion model with stochastic volatility," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 1-13.
- Rehez Ahlip & Marek Rutkowski, 2013. "Pricing of foreign exchange options under the Heston stochastic volatility model and CIR interest rates," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 955-966, May.
- Darrell Duffie & Jun Pan & Kenneth Singleton, 2000.
"Transform Analysis and Asset Pricing for Affine Jump-Diffusions,"
Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
- Darrell Duffie & Jun Pan & Kenneth Singleton, 1999. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," NBER Working Papers 7105, National Bureau of Economic Research, Inc.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Wang, Xiao-Tian & Zhu, En-Hui & Tang, Ming-Ming & Yan, Hai-Gang, 2010. "Scaling and long-range dependence in option pricing II: Pricing European option with transaction costs under the mixed Brownian–fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 445-451.
- Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
- Christoffersen, Peter & Jacobs, Kris, 2004.
"The importance of the loss function in option valuation,"
Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
- Peter Christoffersen & Kris Jacobs, 2003. "The Importance of the Loss Function in Option Valuation," CIRANO Working Papers 2003s-52, CIRANO.
- Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
- Wang, Xiao-Tian & Yan, Hai-Gang & Tang, Ming-Ming & Zhu, En-Hui, 2010. "Scaling and long-range dependence in option pricing III: A fractional version of the Merton model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 452-458.
- L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
- Guo, Zhidong & Yuan, Hongjun, 2014. "Pricing European option under the time-changed mixed Brownian-fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 73-79.
- Rehez Ahlip, 2008. "Foreign Exchange Options Under Stochastic Volatility And Stochastic Interest Rates," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 277-294.
- Merton, Robert C., 1976.
"Option pricing when underlying stock returns are discontinuous,"
Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
- Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Mrázek, Milan & Pospíšil, Jan & Sobotka, Tomáš, 2016. "On calibration of stochastic and fractional stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1036-1046.
- Jan Pospíšil & Tomáš Sobotka, 2016. "Market calibration under a long memory stochastic volatility model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 323-343, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yue Qi & Yue Wang, 2023. "Innovating and Pricing Carbon-Offset Options of Asian Styles on the Basis of Jump Diffusions and Fractal Brownian Motions," Mathematics, MDPI, vol. 11(16), pages 1-22, August.
- Gholamreza Farahmand & Taher Lotfi & Malik Zaka Ullah & Stanford Shateyi, 2023. "Finding an Efficient Computational Solution for the Bates Partial Integro-Differential Equation Utilizing the RBF-FD Scheme," Mathematics, MDPI, vol. 11(5), pages 1-13, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
- R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
- Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
- Carr, Peter & Wu, Liuren, 2004.
"Time-changed Levy processes and option pricing,"
Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
- Peter Carr & Liuren Wu, 2002. "Time-Changed Levy Processes and Option Pricing," Finance 0207011, University Library of Munich, Germany.
- Bin Xie & Weiping Li & Nan Liang, 2021. "Pricing S&P 500 Index Options with L\'evy Jumps," Papers 2111.10033, arXiv.org, revised Nov 2021.
- Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
- Mrázek, Milan & Pospíšil, Jan & Sobotka, Tomáš, 2016. "On calibration of stochastic and fractional stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1036-1046.
- Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013.
"Forecasting with Option-Implied Information,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656,
Elsevier.
- Peter Christoffersen & Kris Jacobs & Bo Young Chang, 2011. "Forecasting with Option Implied Information," CREATES Research Papers 2011-46, Department of Economics and Business Economics, Aarhus University.
- Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
- Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012.
"Valuing American Options Using Fast Recursive Projections,"
Swiss Finance Institute Research Paper Series
12-26, Swiss Finance Institute.
- Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2016. "Valuing American options using fast recursive projections," Working Papers unige:82087, University of Geneva, Geneva School of Economics and Management.
- Antonio Cosma & Stefano Galluccio & Paola Pederzoli & Olivier Scaillet, 2015. "Valuing American options using fast recursive projections," DEM Discussion Paper Series 15-20, Department of Economics at the University of Luxembourg.
- Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
- Gonçalo Faria & João Correia-da-Silva, 2014.
"A closed-form solution for options with ambiguity about stochastic volatility,"
Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
- Gonçalo Faria & João Correia-da-Silva, 2011. "A Closed-Form Solution for Options with Ambiguity about Stochastic Volatility," FEP Working Papers 414, Universidade do Porto, Faculdade de Economia do Porto.
- Omid Jenabi & Nazar Dahmardeh Ghale No, 2018. "Option Pricing in Stochastic Volatility Models Driven by Fractional Jump-Diffusion Processes," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 8(1), pages 1374-1374.
- Sang Byung Seo & Jessica A. Wachter, 2013. "Option Prices in a Model with Stochastic Disaster Risk," NBER Working Papers 19611, National Bureau of Economic Research, Inc.
- Xu, Weidong & Wu, Chongfeng & Li, Hongyi, 2011. "Foreign equity option pricing under stochastic volatility model with double jumps," Economic Modelling, Elsevier, vol. 28(4), pages 1857-1863, July.
- Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
- Ciprian Necula, 2008. "Asset Pricing in a Two-Country Discontinuous General Equilibrium Model," Advances in Economic and Financial Research - DOFIN Working Paper Series 24, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
- Gifty Malhotra & R. Srivastava & H. C. Taneja, 2019. "Comparative Study of Two Extensions of Heston Stochastic Volatility Model," Papers 1912.10237, arXiv.org.
- Jan Pospíšil & Tomáš Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Empirical Economics, Springer, vol. 57(6), pages 1935-1958, December.
- Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
More about this item
Keywords
option pricing; double heston model; Jump-diffusion model; approximative fractional Brownian motion; calibration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:2:p:126-:d:476671. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.