IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v26y2020i17p1725-1745.html
   My bibliography  Save this article

Volatility and variance swaps and options in the fractional SABR model

Author

Listed:
  • See-Woo Kim
  • Jeong-Hoon Kim

Abstract

Appropriate capturing the nature of financial market volatility is a significant factor for the pricing of volatility derivatives. A recent study by Gatheral, Jaisson and Rosenbaum [2018. “Volatility is Rough.” Quantitative Finance 18 (6): 933–949] has found that log-volatility behaves as a fractional Brownian motion with a small Hurst exponent at any reasonable time scale. Also, there are several empirical works showing that a stochastic volatility model driven by the fractional Brownian motion well approximates at-the-money volatility skew near expiration. In this paper, we choose the log-normal SABR model with fractional stochastic volatility to valuate variance and volatility swaps. We derive a closed-form exact solution for the fair strike price of the variance swap by using fractional Ito calculus, while we obtain an approximate solution for the fair strike price of the volatility swap by exploiting the shifted log-normal approximation. Also, solution formulas for the variance and volatility option prices are derived. Their accuracy is confirmed through numerical studies. Calibration to market variance swap rates demonstrates the strength of fractional SABR model compared to the Heston and SABR models.

Suggested Citation

  • See-Woo Kim & Jeong-Hoon Kim, 2020. "Volatility and variance swaps and options in the fractional SABR model," The European Journal of Finance, Taylor & Francis Journals, vol. 26(17), pages 1725-1745, November.
  • Handle: RePEc:taf:eurjfi:v:26:y:2020:i:17:p:1725-1745
    DOI: 10.1080/1351847X.2020.1775671
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2020.1775671
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2020.1775671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Wang & Xunxiang Guo, 2024. "Valuations of Variance and Volatility Swaps Under Double Heston Jump-Diffusion Model With Approximative Fractional Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1543-1573, April.
    2. Kim, Hyun-Gyoon & Kim, See-Woo & Kim, Jeong-Hoon, 2024. "Variance and volatility swaps and options under the exponential fractional Ornstein–Uhlenbeck model," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    3. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Papers 2105.02325, arXiv.org.
    4. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Annals of Finance, Springer, vol. 17(4), pages 529-558, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:26:y:2020:i:17:p:1725-1745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.