IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v83y2021i2d10.1007_s13571-020-00235-w.html
   My bibliography  Save this article

Inferences from Asymmetric Multivariate Exponential Power Distribution

Author

Listed:
  • A. T. Soyinka

    (Federal University of Agriculture Alabata)

  • A. A. Olosunde

    (Obafemi Awolowo University)

Abstract

In this paper, we develop the asymptotic distribution of the covariance structure of an asymmetric multivariate exponential power distribution (AMEPD) by extending the existing Hotelling t2 distribution to its generalized form. The obtained results ‘generalised Hotelling t2 test statistic’, accommodates for the existing Mahalanobis distance between two multivariate data sets. The hazard rate and the characteristics function of the desired test statistics are established. The study further establishes the test of hypothesis and simultaneous confidence interval for the population mean vectors of p th attributes from AMEPD by using the Neymar-Pearson lemma and Pivotal quantity approaches. The obtained results, which are dependent on shape parameter flexibility and skewness parameter, generalize the test of hypothesis and simultaneous confidence intervals of various distributions which are members of the exponential power family. Simulated and real life data were used to demonstrate the usefulness of the obtained results.

Suggested Citation

  • A. T. Soyinka & A. A. Olosunde, 2021. "Inferences from Asymmetric Multivariate Exponential Power Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 350-370, November.
  • Handle: RePEc:spr:sankhb:v:83:y:2021:i:2:d:10.1007_s13571-020-00235-w
    DOI: 10.1007/s13571-020-00235-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-020-00235-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-020-00235-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saralees Nadarajah & Mahdi Teimouri, 2012. "On the Characteristic Function for Asymmetric Exponential Power Distributions," Econometric Reviews, Taylor & Francis Journals, vol. 31(4), pages 475-481.
    2. Ivana Komunjer, 2007. "Asymmetric power distribution: Theory and applications to risk measurement," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 891-921.
    3. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    4. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    5. DiCiccio T.J. & Monti A.C., 2004. "Inferential Aspects of the Skew Exponential Power Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 439-450, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahdi Teimouri & Saralees Nadarajah, 2022. "Maximum Likelihood Estimation for the Asymmetric Exponential Power Distribution," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 665-692, August.
    2. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    3. J. Miguel Marin & Genaro Sucarrat, 2015. "Financial density selection," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1195-1213, November.
    4. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    5. Huber, Peter & Oberhofer, Harald & Pfaffermayr, Michael, 2017. "Who creates jobs? Econometric modeling and evidence for Austrian firm level data," European Economic Review, Elsevier, vol. 91(C), pages 57-71.
    6. Fabrizio Leisen & Luca Rossini & Cristiano Villa, 2020. "Loss-based approach to two-piece location-scale distributions with applications to dependent data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 309-333, June.
    7. Liu, Xiaochun, 2019. "On tail fatness of macroeconomic dynamics," Journal of Macroeconomics, Elsevier, vol. 62(C).
    8. Nadarajah, Saralees & Chan, Stephen & Afuecheta, Emmanuel, 2013. "On the characteristic function for asymmetric Student t distributions," Economics Letters, Elsevier, vol. 121(2), pages 271-274.
    9. Asquith, William H., 2014. "Parameter estimation for the 4-parameter Asymmetric Exponential Power distribution by the method of L-moments using R," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 955-970.
    10. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
    11. Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.
    12. Falk, Michael, 1998. "A Note on the Comedian for Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 306-317, November.
    13. Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
    14. Jacob, P. & Suquet, Ch., 1997. "Regression and asymptotical location of a multivariate sample," Statistics & Probability Letters, Elsevier, vol. 35(2), pages 173-179, September.
    15. Tarpey, Thaddeus, 2000. "Parallel Principal Axes," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 295-313, November.
    16. Isaac E. Cortés & Osvaldo Venegas & Héctor W. Gómez, 2022. "A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution: Properties, Simulation and Applications," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    17. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
    18. Giulio Bottazzi & Angelo Secchi, 2006. "Maximum Likelihood Estimation of the Symmetric and Asymmetric Exponential Power Distribution," LEM Papers Series 2006/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    19. Preinerstorfer, David & Pötscher, Benedikt M., 2017. "On The Power Of Invariant Tests For Hypotheses On A Covariance Matrix," Econometric Theory, Cambridge University Press, vol. 33(1), pages 1-68, February.
    20. Peng Ding, 2016. "On the Conditional Distribution of the Multivariate Distribution," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 293-295, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:83:y:2021:i:2:d:10.1007_s13571-020-00235-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.