IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v172y2013i2p186-194.html
   My bibliography  Save this article

Linear and nonlinear regression with stable errors

Author

Listed:
  • Nolan, John P.
  • Ojeda-Revah, Diana

Abstract

In this paper we describe methods and evaluate programs for linear regression by maximum likelihood when the errors have a heavy tailed stable distribution. The asymptotic Fisher information matrix for both the regression coefficients and the error distribution parameters are derived, giving large sample confidence intervals for all parameters. Simulated examples are shown where the errors are stably distributed and also where the errors are heavy tailed but are not stable, as well as a real example using financial data. The results are then extended to nonlinear models and to non-homogeneous error terms.

Suggested Citation

  • Nolan, John P. & Ojeda-Revah, Diana, 2013. "Linear and nonlinear regression with stable errors," Journal of Econometrics, Elsevier, vol. 172(2), pages 186-194.
  • Handle: RePEc:eee:econom:v:172:y:2013:i:2:p:186-194
    DOI: 10.1016/j.jeconom.2012.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407612001923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2012.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Hallin & Yves-Caoimhin Swan & Thomas Verdebout & David Veredas, 2013. "R-estimation in linear models with stable errors," ULB Institutional Repository 2013/136281, ULB -- Universite Libre de Bruxelles.
    2. Robert Blattberg & Thomas Sargent, 2010. "Regression With Non-Gaussian Stable Disturbances: Some Sampling Results," World Scientific Book Chapters, in: Greg M Allenby (ed.), Perspectives On Promotion And Database Marketing The Collected Works of Robert C Blattberg, chapter 1, pages 7-16, World Scientific Publishing Co. Pte. Ltd..
    3. Hallin, Marc & Swan, Yvik & Verdebout, Thomas & Veredas, David, 2013. "One-step R-estimation in linear models with stable errors," Journal of Econometrics, Elsevier, vol. 172(2), pages 195-204.
    4. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    5. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    6. Nolan, John P., 1998. "Parameterizations and modes of stable distributions," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 187-195, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Ortobelli & Noureddine Kouaissah & Tomáš Tichý, 2017. "On the impact of conditional expectation estimators in portfolio theory," Computational Management Science, Springer, vol. 14(4), pages 535-557, October.
    2. David Neděla & Sergio Ortobelli & Tomáš Tichý, 2024. "Mean–variance vs trend–risk portfolio selection," Review of Managerial Science, Springer, vol. 18(7), pages 2047-2078, July.
    3. Guus Balkema & Paul Embrechts, 2018. "Linear Regression for Heavy Tails," Risks, MDPI, vol. 6(3), pages 1-70, September.
    4. Creal, Drew & Koopman, Siem Jan & Lucas, André & Zamojski, Marcin, 2024. "Observation-driven filtering of time-varying parameters using moment conditions," Journal of Econometrics, Elsevier, vol. 238(2).
    5. Noureddine Kouaissah & Sergio Ortobelli Lozza & Ikram Jebabli, 2022. "Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 833-859, October.
    6. Mikosch, Thomas & de Vries, Casper G., 2013. "Heavy tails of OLS," Journal of Econometrics, Elsevier, vol. 172(2), pages 205-221.
    7. Taurai Muvunza, 2020. "An $\alpha$-Stable Approach to Modelling Highly Speculative Assets and Cryptocurrencies," Papers 2002.09881, arXiv.org, revised Jul 2023.
    8. Lorenzo Ricci & Vincenzo Verardi & Catherine Vermandele, 2016. "A Highly Efficient Regression Estimator for Skewed and/or Heavy-tailed Distributed Errors," Working Papers 19, European Stability Mechanism.
    9. W. D. Walls & Jordi McKenzie, 2020. "Black swan models for the entertainment industry with an application to the movie business," Empirical Economics, Springer, vol. 59(6), pages 3019-3032, December.
    10. Ferdos Gorji & Mina Aminghafari, 2020. "Robust Nonparametric Regression for Heavy-Tailed Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 277-291, September.
    11. Mahdi Teimouri & Saralees Nadarajah, 2022. "Maximum Likelihood Estimation for the Asymmetric Exponential Power Distribution," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 665-692, August.
    12. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    13. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    14. Sio Chong U & Jacky So & Deng Ding & Lihong Liu, 2016. "An efficient Fourier expansion method for the calculation of value-at-risk: Contributions of extra-ordinary risks," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-27, March.
    15. Sergio Ortobelli & Noureddine Kouaissah & Tomáš Tichý, 2019. "On the use of conditional expectation in portfolio selection problems," Annals of Operations Research, Springer, vol. 274(1), pages 501-530, March.
    16. Karling, Maicon J. & Lopes, Sílvia R.C. & de Souza, Roberto M., 2023. "Multivariate α-stable distributions: VAR(1) processes, measures of dependence and their estimations," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    17. Neil Shephard, 2020. "An estimator for predictive regression: reliable inference for financial economics," Papers 2008.06130, arXiv.org.
    18. Roman Rodriguez-Aguilar & Jose Antonio Marmolejo-Saucedo & Brenda Retana-Blanco, 2019. "Prices of Mexican Wholesale Electricity Market: An Application of Alpha-Stable Regression," Sustainability, MDPI, vol. 11(11), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. D. Walls & Jordi McKenzie, 2020. "Black swan models for the entertainment industry with an application to the movie business," Empirical Economics, Springer, vol. 59(6), pages 3019-3032, December.
    2. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute of Labor Economics (IZA).
    3. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    4. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    5. Mikosch, Thomas & de Vries, Casper G., 2013. "Heavy tails of OLS," Journal of Econometrics, Elsevier, vol. 172(2), pages 205-221.
    6. W. Walls, 2005. "Modeling Movie Success When ‘Nobody Knows Anything’: Conditional Stable-Distribution Analysis Of Film Returns," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 29(3), pages 177-190, August.
    7. José Antonio Climent Hernández, 2017. "Portafolios de dispersión mínima con rendimientos log-estables," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 12(2), pages 49-69, Abril-Jun.
    8. José Antonio Climent-Hernández, 2017. "Portafolios de dispersión mínima con rendimientos log-estables Minimum dispersion portfolios with log-stable returns," Remef - The Mexican Journal of Economics and Finance, Instituto Mexicano de Ejecutivos de Finanzas. Remef, March.
    9. Climent-Hernández, José Antonio & Venegas-Martínez, Francisco & Ortiz-Arango, Francisco, 2014. "Portafolio óptimo y productos estructurados en mercados alpha-estables: un enfoque de minimización de riesgo [Optimal Portfolio and Structured Notes in alpha-stable Markets: a Risk Minimization App," MPRA Paper 57740, University Library of Munich, Germany.
    10. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    11. Hayley Jang & Young Hoon Lee & Rodney Fort, 2019. "Winning In Professional Team Sports: Historical Moments," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 103-120, January.
    12. Graves, Timothy & Franzke, Christian L.E. & Watkins, Nicholas W. & Gramacy, Robert B. & Tindale, Elizabeth, 2017. "Systematic inference of the long-range dependence and heavy-tail distribution parameters of ARFIMA models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 60-71.
    13. Alexander Eastman & Brian Lucey, 2008. "Skewness and asymmetry in futures returns and volumes," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 777-800.
    14. Ortobelli, Sergio & Rachev, Svetlozar & Schwartz, Eduardo, 2000. "The Problem of Optimal Asset Allocation with Stable Distributed Returns," University of California at Los Angeles, Anderson Graduate School of Management qt3zd6q86c, Anderson Graduate School of Management, UCLA.
    15. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    16. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    17. Stoyan Stoyanov & Borjana Racheva-Iotova & Svetlozar Rachev & Frank Fabozzi, 2010. "Stochastic models for risk estimation in volatile markets: a survey," Annals of Operations Research, Springer, vol. 176(1), pages 293-309, April.
    18. Kurz-Kim, Jeong-Ryeol & Loretan, Mico, 2014. "On the properties of the coefficient of determination in regression models with infinite variance variables," Journal of Econometrics, Elsevier, vol. 181(1), pages 15-24.
    19. repec:uts:finphd:40 is not listed on IDEAS
    20. Rashid, Abdul, 2007. "Stock prices and trading volume: An assessment for linear and nonlinear Granger causality," Journal of Asian Economics, Elsevier, vol. 18(4), pages 595-612, August.
    21. Einmahl, John & He, Y., 2020. "Unified Extreme Value Estimation for Heterogeneous Data," Other publications TiSEM dfe6c38c-823b-4394-b4fd-a, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    Heavy tailed regression; Stable distributions; Score function;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:172:y:2013:i:2:p:186-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.