IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v41y2003i3-4p577-590.html
   My bibliography  Save this article

Choosing initial values for the EM algorithm for finite mixtures

Author

Listed:
  • Karlis, Dimitris
  • Xekalaki, Evdokia

Abstract

No abstract is available for this item.

Suggested Citation

  • Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.
  • Handle: RePEc:eee:csdana:v:41:y:2003:i:3-4:p:577-590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(02)00177-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marianthi Markatou, 2000. "Mixture Models, Robustness, and the Weighted Likelihood Methodology," Biometrics, The International Biometric Society, vol. 56(2), pages 483-486, June.
    2. Furman, W. David & Lindsay, Bruce G., 1994. "Testing for the number of components in a mixture of normal distributions using moment estimators," Computational Statistics & Data Analysis, Elsevier, vol. 17(5), pages 473-492, June.
    3. Wilfried Seidel & Karl Mosler & Manfred Alker, 2000. "A Cautionary Note on Likelihood Ratio Tests in Mixture Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 481-487, September.
    4. Dankmar Böhning & Ekkehart Dietz & Rainer Schaub & Peter Schlattmann & Bruce Lindsay, 1994. "The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(2), pages 373-388, June.
    5. Dimitris Karlis & Evdokia Xekalaki, 1999. "On Testing for the Number of Components in a Mixed Poisson Model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(1), pages 149-162, March.
    6. Furman, W. David & Lindsay, Bruce G., 1994. "Measuring the relative effectiveness of moment estimators as starting values in maximizing likelihoods," Computational Statistics & Data Analysis, Elsevier, vol. 17(5), pages 493-507, June.
    7. G. J. McLachlan, 1987. "On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 318-324, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlattmann, Peter, 2003. "Estimating the number of components in a finite mixture model: the special case of homogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 441-451, January.
    2. Woo, Mi-Ja & Sriram, T.N., 2007. "Robust estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4379-4392, May.
    3. Bohning, Dankmar & Seidel, Wilfried, 2003. "Editorial: recent developments in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 349-357, January.
    4. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2015. "Cluster-weighted $$t$$ t -factor analyzers for robust model-based clustering and dimension reduction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 623-649, November.
    5. Susko, Edward, 2003. "Weighted tests of homogeneity for testing the number of components in a mixture," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 367-378, January.
    6. Miloslavsky, Maja & van der Laan, Mark J., 2003. "Fitting of mixtures with unspecified number of components using cross validation distance estimate," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 413-428, January.
    7. Fetene B. Tekle & Dereje W. Gudicha & Jeroen K. Vermunt, 2016. "Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(2), pages 209-224, June.
    8. Flachaire, Emmanuel & Nunez, Olivier, 2007. "Estimation of the income distribution and detection of subpopulations: An explanatory model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3368-3380, April.
    9. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    10. Daeyoung Kim & Bruce Lindsay, 2015. "Empirical identifiability in finite mixture models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 745-772, August.
    11. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    12. Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
    13. Fernández, D. & Arnold, R. & Pledger, S., 2016. "Mixture-based clustering for the ordered stereotype model," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 46-75.
    14. Yuan Liu & Hongyun Liu, 2019. "Effects of Distance and Shape on the Estimation of the Piecewise Growth Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 659-677, October.
    15. Park, Seong C. & Brorsen, B. Wade & Stoecker, Arthur L. & Hattey, Jeffory A., 2012. "Forage Response to Swine Effluent: A Cox Nonnested Test of Alternative Functional Forms Using a Fast Double Bootstrap," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 44(4), pages 593-606, November.
    16. Paolo Berta & Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini, 2016. "Multilevel cluster-weighted models for the evaluation of hospitals," METRON, Springer;Sapienza Università di Roma, vol. 74(3), pages 275-292, December.
    17. Geert Soete & Willem Heiser, 1993. "A latent class unfolding model for analyzing single stimulus preference ratings," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 545-565, December.
    18. Atefeh Zarei & Zahra Khodadadi & Mohsen Maleki & Karim Zare, 2023. "Robust mixture regression modeling based on two-piece scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 181-210, March.
    19. Chalabi, Yohan / Y. & Wuertz, Diethelm, 2010. "Weighted trimmed likelihood estimator for GARCH models," MPRA Paper 26536, University Library of Munich, Germany.
    20. Un Jung Lee & ShengLi Tzeng & Yu-Chuan Chen & James J Chen, 2017. "Development of Predictive Signatures for Treatment Selection in Precision Medicine," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 2(4), pages 83-88, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:41:y:2003:i:3-4:p:577-590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.