IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v199y2024ics0047259x23000945.html
   My bibliography  Save this article

On moments of truncated multivariate normal/independent distributions

Author

Listed:
  • Lin, Tsung-I
  • Wang, Wan-Lun

Abstract

Multivariate normal/independent (MNI) distributions contain many renowned heavy-tailed distributions such as the multivariate t, multivariate slash, multivariate contaminated normal, multivariate variance-gamma, and multivariate double exponential distributions. A frequent problem encountered in statistical analysis is the occurrence of truncated observations and non-normality such that theoretical moments are required for the estimation of the truncated multivariate normal/independent (TMNI) distributions. This paper is dedicated to deriving explicit expressions for the moments of the TMNI distributions with supports confined within a hyper-rectangle. A Monte Carlo experiment is undertaken to validate to the correctness of the proposed formulae for five selected members of the TMNI distributions. R scripts and data to reproduce the results are available in the GitHub repository.

Suggested Citation

  • Lin, Tsung-I & Wang, Wan-Lun, 2024. "On moments of truncated multivariate normal/independent distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000945
    DOI: 10.1016/j.jmva.2023.105248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Genç, 2013. "Moments of truncated normal/independent distributions," Statistical Papers, Springer, vol. 54(3), pages 741-764, August.
    2. Bulut, Y. Murat & Arslan, Olcay, 2015. "Matrix variate slash distribution," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 173-178.
    3. Roozegar, Roohollah & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2020. "On moments of doubly truncated multivariate normal mean–variance mixture distributions with application to multivariate tail conditional expectation," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    4. Victor H. Lachos & Dipankar Bandyopadhyay & Dipak K. Dey, 2011. "Linear and Nonlinear Mixed-Effects Models for Censored HIV Viral Loads Using Normal/Independent Distributions," Biometrics, The International Biometric Society, vol. 67(4), pages 1594-1604, December.
    5. G. J. M. Rosa & D. Gianola & C. R. Padovani, 2004. "Bayesian Longitudinal Data Analysis with Mixed Models and Thick-tailed Distributions using MCMC," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 855-873.
    6. Lachos, Victor H. & Castro, Luis M. & Dey, Dipak K., 2013. "Bayesian inference in nonlinear mixed-effects models using normal independent distributions," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 237-252.
    7. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, October.
    8. Victor H. Lachos & Celso R.B. Cabral & Carlos A. Abanto-Valle, 2012. "A non-iterative sampling Bayesian method for linear mixed models with normal independent distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 531-549, July.
    9. Christian E. Galarza & Tsung-I Lin & Wan-Lun Wang & Víctor H. Lachos, 2021. "On moments of folded and truncated multivariate Student-t distributions based on recurrence relations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(6), pages 825-850, August.
    10. Horrace, William C., 2005. "Some results on the multivariate truncated normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 209-221, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özgür Asar & David Bolin & Peter J. Diggle & Jonas Wallin, 2020. "Linear mixed effects models for non‐Gaussian continuous repeated measurement data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1015-1065, November.
    2. Galarza, Christian E. & Matos, Larissa A. & Castro, Luis M. & Lachos, Victor H., 2022. "Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    3. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    4. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    5. Giner, Javier, 2021. "Orthant-based variance decomposition in investment portfolios," European Journal of Operational Research, Elsevier, vol. 291(2), pages 497-511.
    6. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    7. Adeniyi, Isaac Adeola, 2020. "Bayesian Generalized Linear Mixed Effects Models Using Normal-Independent Distributions: Formulation and Applications," MPRA Paper 99165, University Library of Munich, Germany.
    8. Fengkai Yang & Haijing Yuan, 2017. "A Non-iterative Bayesian Sampling Algorithm for Linear Regression Models with Scale Mixtures of Normal Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 579-597, April.
    9. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    10. Yue, Chen & Chen, Shaojie & Sair, Haris I. & Airan, Raag & Caffo, Brian S., 2015. "Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 126-133.
    11. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    12. Punzo, Antonio & Bagnato, Luca, 2022. "Dimension-wise scaled normal mixtures with application to finance and biometry," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    13. Baltagi, Badi H. & Bresson, Georges & Chaturvedi, Anoop & Lacroix, Guy, 2022. "Robust Dynamic Space-Time Panel Data Models Using ?-Contamination: An Application to Crop Yields and Climate Change," IZA Discussion Papers 15815, Institute of Labor Economics (IZA).
    14. Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
    15. Centorrino, Samuele & Pérez-Urdiales, María, 2023. "Maximum likelihood estimation of stochastic frontier models with endogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 82-105.
    16. Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2022. "Some properties of the unified skew-normal distribution," Statistical Papers, Springer, vol. 63(2), pages 461-487, April.
    17. Balakrishnan, N. & Hashorva, E., 2011. "On Pearson-Kotz Dirichlet distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 948-957, May.
    18. Nason, Guy P., 2006. "On the sum of t and Gaussian random variables," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1280-1286, July.
    19. Cruz Lopez, Jorge A. & Harris, Jeffrey H. & Hurlin, Christophe & Pérignon, Christophe, 2017. "CoMargin," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(5), pages 2183-2215, October.
      • Jorge A. Cruz Lopez & Jeffrey H. Harris & Christophe Hurlin & Christophe Pérignon, 2015. "CoMargin," Working Papers halshs-00979440, HAL.
      • Jorge Cruz Lopez & Jeffrey Harris & Christophe Hurlin & Christophe Pérignon, 2017. "CoMargin," Post-Print hal-03579309, HAL.
    20. Torri, Gabriele & Giacometti, Rosella & Tichý, Tomáš, 2021. "Network tail risk estimation in the European banking system," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.