IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i5p1535-1546.html
   My bibliography  Save this article

A heavy-tailed empirical Bayes method for replicated microarray data

Author

Listed:
  • Salas-Gonzalez, Diego
  • Kuruoglu, Ercan E.
  • Ruiz, Diego P.

Abstract

DNA microarray has been recognized as being an important tool for studying the expression of thousands of genes simultaneously. These experiments allow us to compare two different samples of cDNA obtained under different conditions. A novel method for the analysis of replicated microarray experiments based upon the modelling of gene expression distribution as a mixture of [alpha]-stable distributions is presented. Some features of the distribution of gene expression, such as Pareto tails and the fact that the variance of any given array increases concomitantly with an increase in the number of genes studied, suggest the possibility of modelling gene expression distribution on the basis of [alpha]-stable density. The proposed methodology uses very well known properties of [alpha]-stable distribution, such as the scale mixture of normals. A Bayesian log-posterior odds is calculated, which allows us to decide whether a gene is expressed differentially or not. The proposed methodology is illustrated using simulated and experimental data and the results are compared with other existing statistical approaches. The proposed heavy-tail model improves the performance of other distributions and is easily applicable to microarray gene data, specially if the dataset contains outliers or presents high variance between replicates.

Suggested Citation

  • Salas-Gonzalez, Diego & Kuruoglu, Ercan E. & Ruiz, Diego P., 2009. "A heavy-tailed empirical Bayes method for replicated microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1535-1546, March.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:5:p:1535-1546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00395-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim‐Anh Do & Peter Müller & Feng Tang, 2005. "A Bayesian mixture model for differential gene expression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 627-644, June.
    2. Fernández, Carmen & Steel, Mark F.J., 2000. "Bayesian Regression Analysis With Scale Mixtures Of Normals," Econometric Theory, Cambridge University Press, vol. 16(1), pages 80-101, February.
    3. Ash A. Alizadeh & Michael B. Eisen & R. Eric Davis & Chi Ma & Izidore S. Lossos & Andreas Rosenwald & Jennifer C. Boldrick & Hajeer Sabet & Truc Tran & Xin Yu & John I. Powell & Liming Yang & Gerald E, 2000. "Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling," Nature, Nature, vol. 403(6769), pages 503-511, February.
    4. Purdom Elizabeth & Holmes Susan P, 2005. "Error Distribution for Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-35, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sewell, Daniel K., 2018. "Visualizing data through curvilinear representations of matrices," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 255-270.
    2. Punathumparambath, Bindu & Kulathinal, Sangita & George, Sebastian, 2012. "Asymmetric type II compound Laplace distribution and its application to microarray gene expression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1396-1404.
    3. Prendergast, Luke A. & Li Wai Suen, Connie, 2011. "A new and practical influence measure for subsets of covariance matrix sample principal components with applications to high dimensional datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 752-764, January.
    4. Huixia Judy Wang & Leonard A. Stefanski & Zhongyi Zhu, 2012. "Corrected-loss estimation for quantile regression with covariate measurement errors," Biometrika, Biometrika Trust, vol. 99(2), pages 405-421.
    5. Laura Liu, 2017. "Density Forecasts in Panel Models: A semiparametric Bayesian Perspective," PIER Working Paper Archive 17-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Apr 2017.
    6. Han, Bing & Dalal, Siddhartha R., 2012. "A Bernstein-type estimator for decreasing density with application to p-value adjustments," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 427-437.
    7. Wang Chamont & Gevertz Jana L., 2016. "Finding causative genes from high-dimensional data: an appraisal of statistical and machine learning approaches," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 321-347, August.
    8. Olcay Arslan, 2010. "An alternative multivariate skew Laplace distribution: properties and estimation," Statistical Papers, Springer, vol. 51(4), pages 865-887, December.
    9. Canale, Antonio & Lijoi, Antonio & Nipoti, Bernardo & Prünster, Igor, 2023. "Inner spike and slab Bayesian nonparametric models," Econometrics and Statistics, Elsevier, vol. 27(C), pages 120-135.
    10. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    11. Barrientos, Andrés F. & Canale, Antonio, 2021. "A Bayesian goodness-of-fit test for regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    12. Kaul, Abhishek & Koul, Hira L., 2015. "Weighted ℓ1-penalized corrected quantile regression for high dimensional measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 72-91.
    13. Mehmet Niyazi Çankaya & Abdullah Yalçınkaya & Ömer Altındaǧ & Olcay Arslan, 2019. "On the robustness of an epsilon skew extension for Burr III distribution on the real line," Computational Statistics, Springer, vol. 34(3), pages 1247-1273, September.
    14. Nilsen Gro & LiestØl Knut & Borgan Ørnulf & Lingjærde Ole Christian, 2013. "Identifying clusters in genomics data by recursive partitioning," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 637-652, October.
    15. Yongho Ko & Seungwoo Han, 2017. "A Duration Prediction Using a Material-Based Progress Management Methodology for Construction Operation Plans," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    16. Michele Guindani & Wesley O. Johnson, 2018. "More nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 239-251, June.
    17. Scott, James G., 2012. "Benchmarking historical corporate performance," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1795-1807.
    18. Jung, Yeun Ji & Hobert, James P., 2014. "Spectral properties of MCMC algorithms for Bayesian linear regression with generalized hyperbolic errors," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 92-100.
    19. Shotwell Matthew S & Slate Elizabeth H, 2010. "Bayesian Modeling of Footrace Finishing Times," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-21, July.
    20. Richard F. MacLehose & David B. Dunson, 2010. "Bayesian Semiparametric Multiple Shrinkage," Biometrics, The International Biometric Society, vol. 66(2), pages 455-462, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:5:p:1535-1546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.