IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v48y2016i1d10.1007_s10614-015-9506-7.html
   My bibliography  Save this article

A Numerical Method for Discrete Single Barrier Option Pricing with Time-Dependent Parameters

Author

Listed:
  • Rahman Farnoosh

    (Iran University of Science and Technology)

  • Hamidreza Rezazadeh

    (Iran University of Science and Technology)

  • Amirhossein Sobhani

    (Iran University of Science and Technology)

  • M. Hossein Beheshti

    (Islamic Azad university)

Abstract

In this article, the researchers obtained a recursive formula for the price of discrete single barrier option based on the Black–Scholes framework in which drift, dividend yield and volatility assumed as deterministic functions of time. With some general transformations, the partial differential equations (PDEs) corresponding to option value problem, in each monitoring time interval, were converted into well-known Black–Scholes PDE with constant coefficients. Finally, an innovative numerical approach was proposed to utilize the obtained recursive formula efficiently. Despite some claims, it has considerably low computational cost and could be competitive with the other introduced method. In addition, one advantage of this method, is that the Greeks of the contracts were also calculated.

Suggested Citation

  • Rahman Farnoosh & Hamidreza Rezazadeh & Amirhossein Sobhani & M. Hossein Beheshti, 2016. "A Numerical Method for Discrete Single Barrier Option Pricing with Time-Dependent Parameters," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 131-145, June.
  • Handle: RePEc:kap:compec:v:48:y:2016:i:1:d:10.1007_s10614-015-9506-7
    DOI: 10.1007/s10614-015-9506-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-015-9506-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-015-9506-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. F. Lo & H. C. Lee & C. H. Hui, 2003. "A simple approach for pricing barrier options with time-dependent parameters," Quantitative Finance, Taylor & Francis Journals, vol. 3(2), pages 98-107.
    2. Jin-Chuan Duan & Evan Dudley & Geneviève Gauthier & Jean-Guy Simonato, 1999. "Pricing Discretely Monitored Barrier Options by a Markov Chain," CIRANO Working Papers 99s-15, CIRANO.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Gianluca Fusai & I. Abrahams & Carlo Sgarra, 2006. "An exact analytical solution for discrete barrier options," Finance and Stochastics, Springer, vol. 10(1), pages 1-26, January.
    5. Naoto Kunitomo & Masayuki Ikeda, 1992. "Pricing Options With Curved Boundaries1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 275-298, October.
    6. Fusai, Gianluca & Recchioni, Maria Cristina, 2007. "Analysis of quadrature methods for pricing discrete barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 826-860, March.
    7. R. C. Heynen & H. M. Kat, 1995. "Lookback options with discrete and partial monitoring of the underlying price," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(4), pages 273-284.
    8. Antoon Pelsser, 2000. "Pricing double barrier options using Laplace transforms," Finance and Stochastics, Springer, vol. 4(1), pages 95-104.
    9. Hélyette Geman & Marc Yor, 1996. "Pricing And Hedging Double‐Barrier Options: A Probabilistic Approach," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 365-378, October.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    12. Phelim Boyle & Yisong Tian, 1998. "An explicit finite difference approach to the pricing of barrier options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(1), pages 17-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangkwon Kim & Jisang Lyu & Wonjin Lee & Eunchae Park & Hanbyeol Jang & Chaeyoung Lee & Junseok Kim, 2024. "A Practical Monte Carlo Method for Pricing Equity-Linked Securities with Time-Dependent Volatility and Interest Rate," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2069-2086, May.
    2. Darae Jeong & Minhyun Yoo & Changwoo Yoo & Junseok Kim, 2019. "A Hybrid Monte Carlo and Finite Difference Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 111-124, January.
    3. Chaeyoung Lee & Soobin Kwak & Youngjin Hwang & Junseok Kim, 2023. "Accurate and Efficient Finite Difference Method for the Black–Scholes Model with No Far-Field Boundary Conditions," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1207-1224, March.
    4. Saadet Eskiizmirliler & Korhan Günel & Refet Polat, 2021. "On the Solution of the Black–Scholes Equation Using Feed-Forward Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 915-941, October.
    5. Ahmad Golbabai & Omid Nikan, 2020. "A Computational Method Based on the Moving Least-Squares Approach for Pricing Double Barrier Options in a Time-Fractional Black–Scholes Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 119-141, January.
    6. Zhang, Xiaoyuan & Zhang, Tianqi, 2022. "Barrier option pricing under a Markov Regime switching diffusion model," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 273-280.
    7. Meihui Zhang & Xiangcheng Zheng, 2023. "Numerical Approximation to a Variable-Order Time-Fractional Black–Scholes Model with Applications in Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1155-1175, October.
    8. Darae Jeong & Minhyun Yoo & Junseok Kim, 2018. "Finite Difference Method for the Black–Scholes Equation Without Boundary Conditions," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 961-972, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    2. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    3. A. Golbabai & L. Ballestra & D. Ahmadian, 2014. "A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 153-173, August.
    4. Andrew Ming-Long Wang & Yu-Hong Liu & Yi-Long Hsiao, 2009. "Barrier option pricing: a hybrid method approach," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 341-352.
    5. Keegan Mendonca & Vasileios E. Kontosakos & Athanasios A. Pantelous & Konstantin M. Zuev, 2018. "Efficient Pricing of Barrier Options on High Volatility Assets using Subset Simulation," Papers 1803.03364, arXiv.org, revised Mar 2018.
    6. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    7. Jos� Carlos Dias & João Pedro Vidal Nunes & João Pedro Ruas, 2015. "Pricing and static hedging of European-style double barrier options under the jump to default extended CEV model," Quantitative Finance, Taylor & Francis Journals, vol. 15(12), pages 1995-2010, December.
    8. Amirhossein Sobhani & Mariyan Milev, 2017. "A Numerical Method for Pricing Discrete Double Barrier Option by Legendre Multiwavelet," Papers 1703.09129, arXiv.org, revised Mar 2017.
    9. Marianito R. Rodrigo, 2020. "Pricing of Barrier Options on Underlying Assets with Jump-Diffusion Dynamics: A Mellin Transform Approach," Mathematics, MDPI, vol. 8(8), pages 1-20, August.
    10. Choe, Geon Ho & Koo, Ki Hwan, 2014. "Probability of multiple crossings and pricing of double barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 156-184.
    11. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    12. Amirhossein Sobhani & Mariyan Milev, 2017. "A Numerical Method for Pricing Discrete Double Barrier Option by Lagrange Interpolation on Jacobi Node," Papers 1712.01060, arXiv.org, revised Feb 2018.
    13. Fusai, Gianluca & Recchioni, Maria Cristina, 2007. "Analysis of quadrature methods for pricing discrete barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 826-860, March.
    14. Antoon Pelsser, "undated". "Pricing Double Barrier Options: An Analytical Approach," Computing in Economics and Finance 1997 130, Society for Computational Economics.
    15. repec:dau:papers:123456789/5374 is not listed on IDEAS
    16. Carole Bernard & Phelim Boyle, 2011. "Monte Carlo methods for pricing discrete Parisian options," The European Journal of Finance, Taylor & Francis Journals, vol. 17(3), pages 169-196.
    17. U Hou Lok & Yuh‐Dauh Lyuu, 2020. "Efficient trinomial trees for local‐volatility models in pricing double‐barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 556-574, April.
    18. Feng, Yun & Huang, Bing-hua & Young, Martin & Zhou, Qi-yuan, 2015. "Decomposing and valuing convertible bonds: A new method based on exotic options," Economic Modelling, Elsevier, vol. 47(C), pages 193-206.
    19. Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.
    20. Dmitry Davydov & Vadim Linetsky, 2003. "Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 51(2), pages 185-209, April.
    21. Zhang, Xiaoyuan & Zhang, Tianqi, 2023. "On pricing double-barrier options with Markov regime switching," Finance Research Letters, Elsevier, vol. 51(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:48:y:2016:i:1:d:10.1007_s10614-015-9506-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.