IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1703.09129.html
   My bibliography  Save this paper

A Numerical Method for Pricing Discrete Double Barrier Option by Legendre Multiwavelet

Author

Listed:
  • Amirhossein Sobhani
  • Mariyan Milev

Abstract

In this Article, a fast numerical numerical algorithm for pricing discrete double barrier option is presented. According to Black-Scholes model, the price of option in each monitoring date can be evaluated by a recursive formula upon the heat equation solution. These recursive solutions are approximated by using Legendre multiwavelets as orthonormal basis functions and expressed in operational matrix form. The most important feature of this method is that its CPU time is nearly invariant when monitoring dates increase. Besides, the rate of convergence of presented algorithm was obtained. The numerical results verify the validity and efficiency of the numerical method.

Suggested Citation

  • Amirhossein Sobhani & Mariyan Milev, 2017. "A Numerical Method for Pricing Discrete Double Barrier Option by Legendre Multiwavelet," Papers 1703.09129, arXiv.org, revised Mar 2017.
  • Handle: RePEc:arx:papers:1703.09129
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1703.09129
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antoon Pelsser, 2000. "Pricing double barrier options using Laplace transforms," Finance and Stochastics, Springer, vol. 4(1), pages 95-104.
    2. M. Broadie & Y. Yamamoto, 2005. "A Double-Exponential Fast Gauss Transform Algorithm for Pricing Discrete Path-Dependent Options," Operations Research, INFORMS, vol. 53(5), pages 764-779, October.
    3. Christian Skaug & Arvid Naess, 2007. "Fast and accurate pricing of discretely monitored barrier options by numerical path integration," Computational Economics, Springer;Society for Computational Economics, vol. 30(2), pages 143-151, September.
    4. Jin-Chuan Duan & Evan Dudley & Geneviève Gauthier & Jean-Guy Simonato, 1999. "Pricing Discretely Monitored Barrier Options by a Markov Chain," CIRANO Working Papers 99s-15, CIRANO.
    5. Gianluca Fusai & I. Abrahams & Carlo Sgarra, 2006. "An exact analytical solution for discrete barrier options," Finance and Stochastics, Springer, vol. 10(1), pages 1-26, January.
    6. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    7. Gregor Dorfleitner & Paul Schneider & Kurt Hawlitschek & Arne Buch, 2008. "Pricing options with Green's functions when volatility, interest rate and barriers depend on time," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 119-133.
    8. Paolo Baldi & Lucia Caramellino & Maria Gabriella Iovino, 1999. "Pricing General Barrier Options: A Numerical Approach Using Sharp Large Deviations," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 293-321, October.
    9. Andricopoulos, Ari D. & Widdicks, Martin & Duck, Peter W. & Newton, David P., 2003. "Universal option valuation using quadrature methods," Journal of Financial Economics, Elsevier, vol. 67(3), pages 447-471, March.
    10. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    11. Bardia Kamrad & Peter Ritchken, 1991. "Multinomial Approximating Models for Options with k State Variables," Management Science, INFORMS, vol. 37(12), pages 1640-1652, December.
    12. A. Golbabai & L. Ballestra & D. Ahmadian, 2014. "A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 153-173, August.
    13. Fusai, Gianluca & Recchioni, Maria Cristina, 2007. "Analysis of quadrature methods for pricing discrete barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 826-860, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirhossein Sobhani & Mariyan Milev, 2017. "A Numerical Method for Pricing Discrete Double Barrier Option by Lagrange Interpolation on Jacobi Node," Papers 1712.01060, arXiv.org, revised Feb 2018.
    2. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    3. A. Golbabai & L. Ballestra & D. Ahmadian, 2014. "A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 153-173, August.
    4. Min Huang & Guo Luo, 2019. "A simple and efficient numerical method for pricing discretely monitored early-exercise options," Papers 1905.13407, arXiv.org, revised Jun 2019.
    5. Rahman Farnoosh & Hamidreza Rezazadeh & Amirhossein Sobhani & M. Hossein Beheshti, 2016. "A Numerical Method for Discrete Single Barrier Option Pricing with Time-Dependent Parameters," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 131-145, June.
    6. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    7. Keegan Mendonca & Vasileios E. Kontosakos & Athanasios A. Pantelous & Konstantin M. Zuev, 2018. "Efficient Pricing of Barrier Options on High Volatility Assets using Subset Simulation," Papers 1803.03364, arXiv.org, revised Mar 2018.
    8. Huang, Min & Luo, Guo, 2022. "A simple and efficient numerical method for pricing discretely monitored early-exercise options," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    9. Lingfei Li & Vadim Linetsky, 2015. "Discretely monitored first passage problems and barrier options: an eigenfunction expansion approach," Finance and Stochastics, Springer, vol. 19(4), pages 941-977, October.
    10. Sesana, Debora & Marazzina, Daniele & Fusai, Gianluca, 2014. "Pricing exotic derivatives exploiting structure," European Journal of Operational Research, Elsevier, vol. 236(1), pages 369-381.
    11. Alev{s} v{C}ern'y, 2016. "Discrete-Time Quadratic Hedging of Barrier Options in Exponential L\'{e}vy Model," Papers 1603.03747, arXiv.org.
    12. Xie, Fei & He, Zhijian & Wang, Xiaoqun, 2019. "An importance sampling-based smoothing approach for quasi-Monte Carlo simulation of discrete barrier options," European Journal of Operational Research, Elsevier, vol. 274(2), pages 759-772.
    13. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Lookback Option Pricing under Markov Models," Papers 2112.00439, arXiv.org.
    14. Jie Chen & Liaoyuan Fan & Lingfei Li & Gongqiu Zhang, 2022. "A multidimensional Hilbert transform approach for barrier option pricing and survival probability calculation," Review of Derivatives Research, Springer, vol. 25(2), pages 189-232, July.
    15. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun & Zhang, Yue, 2019. "Pricing discrete barrier options under jump-diffusion model with liquidity risk," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 347-368.
    16. Fusai, Gianluca & Recchioni, Maria Cristina, 2007. "Analysis of quadrature methods for pricing discrete barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 826-860, March.
    17. Cai, Ning & Li, Chenxu & Shi, Chao, 2021. "Pricing discretely monitored barrier options: When Malliavin calculus expansions meet Hilbert transforms," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    18. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    19. Christian Skaug & Arvid Naess, 2007. "Fast and accurate pricing of discretely monitored barrier options by numerical path integration," Computational Economics, Springer;Society for Computational Economics, vol. 30(2), pages 143-151, September.
    20. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1703.09129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.