IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v58y2021i3d10.1007_s10614-020-10070-w.html
   My bibliography  Save this article

On the Solution of the Black–Scholes Equation Using Feed-Forward Neural Networks

Author

Listed:
  • Saadet Eskiizmirliler

    (Yasar University)

  • Korhan Günel

    (Aydın Adnan Menderes University)

  • Refet Polat

    (Yasar University)

Abstract

This paper deals with a comparative numerical analysis of the Black–Scholes equation for the value of a European call option. Artificial neural networks are used for the numerical solution to this problem. According to this method, we approximate the unknown function of the option value using a trial function, which depends on a neural network solution and satisfies the given boundary conditions of the Black–Scholes equation. We consider some optimization methods, not examined in the standard literature, such as particle swarm optimization and the gradient-type monotone iteration process, to obtain the unknown parameters of the neural network. Numerical results show that this proposed version of neural network method obtains all data from the terminal value and boundary conditions with sufficient accuracy.

Suggested Citation

  • Saadet Eskiizmirliler & Korhan Günel & Refet Polat, 2021. "On the Solution of the Black–Scholes Equation Using Feed-Forward Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 915-941, October.
  • Handle: RePEc:kap:compec:v:58:y:2021:i:3:d:10.1007_s10614-020-10070-w
    DOI: 10.1007/s10614-020-10070-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-020-10070-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-020-10070-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2008. "Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1415-1433, March.
    2. Fusai, Gianluca & Recchioni, Maria Cristina, 2007. "Analysis of quadrature methods for pricing discrete barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 826-860, March.
    3. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    4. Ahmad Golbabai & Omid Nikan, 2020. "A Computational Method Based on the Moving Least-Squares Approach for Pricing Double Barrier Options in a Time-Fractional Black–Scholes Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 119-141, January.
    5. Levy, George, 2016. "Computational Finance Using C and C#," Elsevier Monographs, Elsevier, edition 2, number 9780128035795.
    6. Yao, Jingtao & Li, Yili & Tan, Chew Lim, 2000. "Option price forecasting using neural networks," Omega, Elsevier, vol. 28(4), pages 455-466, August.
    7. Huisu Jang & Jaewook Lee, 2019. "Generative Bayesian neural network model for risk-neutral pricing of American index options," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 587-603, April.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Rahman Farnoosh & Hamidreza Rezazadeh & Amirhossein Sobhani & M. Hossein Beheshti, 2016. "A Numerical Method for Discrete Single Barrier Option Pricing with Time-Dependent Parameters," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 131-145, June.
    10. Chowdhury, Reaz & Mahdy, M.R.C. & Alam, Tanisha Nourin & Al Quaderi, Golam Dastegir & Arifur Rahman, M., 2020. "Predicting the stock price of frontier markets using machine learning and modified Black–Scholes Option pricing model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Wysocki & Robert Ślepaczuk, 2020. "Artificial Neural Networks Performance in WIG20 Index Options Pricing," Working Papers 2020-19, Faculty of Economic Sciences, University of Warsaw.
    2. Bodo Herzog & Sufyan Osamah, 2019. "Reverse Engineering of Option Pricing: An AI Application," IJFS, MDPI, vol. 7(4), pages 1-12, November.
    3. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    4. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    5. Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500, arXiv.org.
    6. Yao Wang & Jingmei Zhao & Qing Li & Xiangyu Wei, 2024. "Considering momentum spillover effects via graph neural network in option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 1069-1094, June.
    7. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    8. Chaeyoung Lee & Soobin Kwak & Youngjin Hwang & Junseok Kim, 2023. "Accurate and Efficient Finite Difference Method for the Black–Scholes Model with No Far-Field Boundary Conditions," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1207-1224, March.
    9. Efe Arin & A. Murat Ozbayoglu, 2022. "Deep Learning Based Hybrid Computational Intelligence Models for Options Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 39-58, January.
    10. Meihui Zhang & Xiangcheng Zheng, 2023. "Numerical Approximation to a Variable-Order Time-Fractional Black–Scholes Model with Applications in Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1155-1175, October.
    11. Jeonggyu Huh, 2018. "Pricing Options with Exponential Levy Neural Network," Papers 1802.06520, arXiv.org, revised Sep 2018.
    12. Anindya Goswami & Nimit Rana, 2024. "A market resilient data-driven approach to option pricing," Papers 2409.08205, arXiv.org.
    13. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    14. Darae Jeong & Minhyun Yoo & Junseok Kim, 2018. "Finite Difference Method for the Black–Scholes Equation Without Boundary Conditions," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 961-972, April.
    15. Darae Jeong & Minhyun Yoo & Changwoo Yoo & Junseok Kim, 2019. "A Hybrid Monte Carlo and Finite Difference Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 111-124, January.
    16. Yan Liu & Xiong Zhang, 2023. "Option Pricing Using LSTM: A Perspective of Realized Skewness," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    17. Gradojevic Nikola, 2016. "Multi-criteria classification for pricing European options," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 123-139, April.
    18. Abdi, N. & Aminikhah, H. & Sheikhani, A.H. Refahi, 2022. "High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
    20. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:58:y:2021:i:3:d:10.1007_s10614-020-10070-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.