IDEAS home Printed from https://ideas.repec.org/p/inn/wpaper/2011-21.html
   My bibliography  Save this paper

Flexible Rasch Mixture Models with Package psychomix

Author

Listed:
  • Hannah Frick
  • Carolin Strobl
  • Friedrich Leisch
  • Achim Zeileis

Abstract

Measurement invariance is an important assumption in the Rasch model and mixture models constitute a flexible way of checking for a violation of this assumption by detecting unobserved heterogeneity in item response data. Here, a general class of Rasch mixture models is established and implemented in R, using conditional maximum likelihood estimation of the item parameters (given the raw scores) along with flexible specification of two model building blocks: (1) Mixture weights for the unobserved classes can be treated as model parameters or based on covariates in a concomitant variable model. (2) The distribution of raw score probabilities can be parametrized in two possible ways, either using a saturated model or a specification through mean and variance. The function raschmix() in the R package "psychomix" provides these models, leveraging the general infrastructure for fitting mixture models in the "flexmix" package. Usage of the function and its associated methods is illustrated on artificial data as well as empirical data from a study of verbally aggressive behavior.

Suggested Citation

  • Hannah Frick & Carolin Strobl & Friedrich Leisch & Achim Zeileis, 2011. "Flexible Rasch Mixture Models with Package psychomix," Working Papers 2011-21, Faculty of Economics and Statistics, Universität Innsbruck.
  • Handle: RePEc:inn:wpaper:2011-21
    as

    Download full text from publisher

    File URL: https://www2.uibk.ac.at/downloads/c4041030/wpaper/2011-21.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mair, Patrick & Hatzinger, Reinhold, 2007. "Extended Rasch Modeling: The eRm Package for the Application of IRT Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i09).
    2. Carolin Strobl & Julia Kopf & Achim Zeileis, 2011. "A new method for detecting differential item functioning in the Rasch model," Working Papers 2011-01, Faculty of Economics and Statistics, Universität Innsbruck.
    3. Leisch, Friedrich, 2004. "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i08).
    4. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    5. Rizopoulos, Dimitris, 2006. "ltm: An R Package for Latent Variable Modeling and Item Response Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 17(i05).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannah Frick & Carolin Strobl & Achim Zeileis, 2013. "Rasch Mixture Models for DIF Detection: A Comparison of Old and New Score Specifications," Working Papers 2013-36, Faculty of Economics and Statistics, Universität Innsbruck.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    2. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    3. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    4. Marc A. Scott & Kaushik Mohan & Jacques‐Antoine Gauthier, 2020. "Model‐based clustering and analysis of life history data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1231-1251, June.
    5. Cervantes, Víctor H., 2017. "DFIT: An R Package for Raju's Differential Functioning of Items and Tests Framework," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i05).
    6. Maik Dehnert & Josephine Schumann, 2022. "Uncovering the digitalization impact on consumer decision-making for checking accounts in banking," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1503-1528, September.
    7. Prates, Marcos Oliveira & Lachos, Victor Hugo & Barbosa Cabral, Celso Rômulo, 2013. "mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i12).
    8. Papastamoulis, Panagiotis & Martin-Magniette, Marie-Laure & Maugis-Rabusseau, Cathy, 2016. "On the estimation of mixtures of Poisson regression models with large number of components," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 97-106.
    9. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    10. Boris Branisa & Adriana Cardozo, 2009. "Revisiting the Regional Growth Convergence Debate in Colombia Using Income Indicators," Ibero America Institute for Econ. Research (IAI) Discussion Papers 194, Ibero-America Institute for Economic Research, revised 21 Aug 2009.
    11. Rainer Schlittgen, 2011. "A weighted least-squares approach to clusterwise regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 205-217, June.
    12. Franko, Mitja & Nagode, Marko, 2015. "Probability density function of the equivalent stress amplitude using statistical transformation," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 118-125.
    13. repec:mea:meawpa:12260 is not listed on IDEAS
    14. Aleksey Min & Matthias Scherer & Amelie Schischke & Rudi Zagst, 2020. "Modeling Recovery Rates of Small- and Medium-Sized Entities in the US," Mathematics, MDPI, vol. 8(11), pages 1-18, October.
    15. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2013. "Clustering and classification via cluster-weighted factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 5-40, March.
    16. Spindler, Martin, 2013. "“They do know what they are doing... at least most of them.†Asymmetric Information in the (private) Disability Insurance," MEA discussion paper series 201209, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    17. Dolnicar, Sara & Grün, Bettina & Leisch, Friedrich, 2016. "Increasing sample size compensates for data problems in segmentation studies," Journal of Business Research, Elsevier, vol. 69(2), pages 992-999.
    18. Omerovic, Sanela & Friedl, Herwig & Grün, Bettina, 2022. "Modelling Multiple Regimes in Economic Growth by Mixtures of Generalised Nonlinear Models," Econometrics and Statistics, Elsevier, vol. 22(C), pages 124-135.
    19. Mengyu Yu & Mazie Krehbiel & Samantha Thompson & Tatjana Miljkovic, 2020. "An exploration of gender gap using advanced data science tools: actuarial research community," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 767-789, May.
    20. Adelchi Azzalini & Giovanna Menardi, 2016. "Density-based clustering with non-continuous data," Computational Statistics, Springer, vol. 31(2), pages 771-798, June.
    21. Proust-Lima, Cécile & Philipps, Viviane & Liquet, Benoit, 2017. "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i02).

    More about this item

    Keywords

    mixed Rasch model; Rost model; mixture model; flexmix; R;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2011-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Janette Walde (email available below). General contact details of provider: https://edirc.repec.org/data/fuibkat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.