The R Package bgmm: Mixture Modeling with Uncertain Knowledge
Author
Abstract
Suggested Citation
DOI: http://hdl.handle.net/10.18637/jss.v047.i03
Download full text from publisher
References listed on IDEAS
- Bergé, Laurent & Bouveyron, Charles & Girard, Stéphane, 2012. "HDclassif: An R Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 46(i06).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mairech, Hanene & López-Bernal, Álvaro & Moriondo, Marco & Dibari, Camilla & Regni, Luca & Proietti, Primo & Villalobos, Francisco J. & Testi, Luca, 2020. "Is new olive farming sustainable? A spatial comparison of productive and environmental performances between traditional and new olive orchards with the model OliveCan," Agricultural Systems, Elsevier, vol. 181(C).
- Kim, Nam-Hwui & Browne, Ryan P., 2021. "In the pursuit of sparseness: A new rank-preserving penalty for a finite mixture of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Carlo Cavicchia & Maurizio Vichi & Giorgia Zaccaria, 2022. "Gaussian mixture model with an extended ultrametric covariance structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 399-427, June.
- Vaghefi, A. & Farzan, Farbod & Jafari, Mohsen A., 2015. "Modeling industrial loads in non-residential buildings," Applied Energy, Elsevier, vol. 158(C), pages 378-389.
- Nia, Vahid Partovi & Davison, Anthony C., 2012. "High-Dimensional Bayesian Clustering with Variable Selection: The R Package bclust," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i05).
- Branislav Panić & Jernej Klemenc & Marko Nagode, 2020. "Optimizing the Estimation of a Histogram-Bin Width—Application to the Multivariate Mixture-Model Estimation," Mathematics, MDPI, vol. 8(7), pages 1-30, July.
- William Cipolli & Timothy Hanson, 2019. "Supervised learning via smoothed Polya trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 877-904, December.
- Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
- Maghrour Zefreh, Mohammad & Saif, Muhammad Atiullah & Esztergár-Kiss, Domokos & Torok, Adam, 2023. "A data-driven decision support tool for public transport service analysis and provision," Transport Policy, Elsevier, vol. 135(C), pages 82-90.
- Mayra Z Rodriguez & Cesar H Comin & Dalcimar Casanova & Odemir M Bruno & Diego R Amancio & Luciano da F Costa & Francisco A Rodrigues, 2019. "Clustering algorithms: A comparative approach," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-34, January.
- Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
- Laura Anderlucci & Francesca Fortunato & Angela Montanari, 2022. "High-Dimensional Clustering via Random Projections," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 191-216, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:047:i03. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.