IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v55y2021i1p238-256.html
   My bibliography  Save this article

Routing Electric Vehicles on Congested Street Networks

Author

Listed:
  • Alexandre M. Florio

    (Center microelectronics de Provence Georges Charpak and Laboratoire informatique, modélisation et optimisation des systèmes, Centre national de la recherche scientifique unité mixte de recherche 6158, École des Mines de Saint-Étienne, F-13541 Gardanne, France)

  • Nabil Absi

    (Center microelectronics de Provence Georges Charpak and Laboratoire informatique, modélisation et optimisation des systèmes, Centre national de la recherche scientifique unité mixte de recherche 6158, École des Mines de Saint-Étienne, F-13541 Gardanne, France)

  • Dominique Feillet

    (Center microelectronics de Provence Georges Charpak and Laboratoire informatique, modélisation et optimisation des systèmes, Centre national de la recherche scientifique unité mixte de recherche 6158, École des Mines de Saint-Étienne, F-13541 Gardanne, France)

Abstract

Freight distribution with electric vehicles (EVs) is a promising alternative to reduce the carbon footprint associated with city logistics. Algorithms for planning routes for EVs should take into account their relatively short driving range and the effects of traffic congestion on the battery consumption. This paper proposes new methodology and illustrates how it can be applied to solve an electric vehicle routing problem with stochastic and time-dependent travel times where battery recharging along routes is not allowed. First, a new method for generating network-consistent (correlated in time and space) and time-dependent speed scenarios is introduced. Second, a new technique for applying branch and price on instances defined on real street networks is developed. Computational experiments demonstrate the effectiveness of the approach for finding optimal or near-optimal solutions in instances with up to 133 customers and almost 1,500 road links. With a high probability, the routes in the obtained solutions can be performed by EVs without requiring intermediate recharging stops. An execution time control policy to further reduce the chances of stranded EVs is also presented. In addition, we measure the cost of independence , which is the impact on solution feasibility when travel times are assumed statistically independent. Last, we give directions on how to extend the proposed framework to handle recourse actions.

Suggested Citation

  • Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
  • Handle: RePEc:inm:ortrsc:v:55:y:2021:i:1:p:238-256
    DOI: 10.1287/trsc.2020.1004
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2020.1004
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2020.1004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick Jaillet & Jin Qi & Melvyn Sim, 2016. "Routing Optimization Under Uncertainty," Operations Research, INFORMS, vol. 64(1), pages 186-200, February.
    2. Qian, Jiani & Eglese, Richard, 2016. "Fuel emissions optimization in vehicle routing problems with time-varying speeds," European Journal of Operational Research, Elsevier, vol. 248(3), pages 840-848.
    3. Guy Desaulniers & Fausto Errico & Stefan Irnich & Michael Schneider, 2016. "Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 64(6), pages 1388-1405, December.
    4. Alexandre M. Florio & Richard F. Hartl & Stefan Minner, 2020. "New Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 54(4), pages 1073-1090, July.
    5. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    6. Juho Andelmin & Enrico Bartolini, 2017. "An Exact Algorithm for the Green Vehicle Routing Problem," Transportation Science, INFORMS, vol. 51(4), pages 1288-1303, November.
    7. Lecluyse, Christophe & Sörensen, Kenneth & Peremans, Herbert, 2013. "A network-consistent time-dependent travel time layer for routing optimization problems," European Journal of Operational Research, Elsevier, vol. 226(3), pages 395-413.
    8. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    9. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2019. "The electric vehicle routing problem with energy consumption uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 225-255.
    10. Alexander Y. Bigazzi & Kelly J. Clifton, 2015. "Modeling the effects of congestion on fuel economy for advanced power train vehicles," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(2), pages 149-161, March.
    11. Schilde, M. & Doerner, K.F. & Hartl, R.F., 2014. "Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 18-30.
    12. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    13. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    14. Zhaoxia Guo & Stein W. Wallace & Michal Kaut, 2019. "Vehicle Routing with Space- and Time-Correlated Stochastic Travel Times: Evaluating the Objective Function," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 654-670, October.
    15. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    16. Huang, Yixiao & Zhao, Lei & Van Woensel, Tom & Gross, Jean-Philippe, 2017. "Time-dependent vehicle routing problem with path flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 169-195.
    17. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2018. "Charge scheduling for electric freight vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 246-269.
    19. Bernhard Fleischmann & Martin Gietz & Stefan Gnutzmann, 2004. "Time-Varying Travel Times in Vehicle Routing," Transportation Science, INFORMS, vol. 38(2), pages 160-173, May.
    20. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    21. Raeesi, Ramin & Zografos, Konstantinos G., 2019. "The multi-objective Steiner pollution-routing problem on congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 457-485.
    22. Garaix, Thierry & Artigues, Christian & Feillet, Dominique & Josselin, Didier, 2010. "Vehicle routing problems with alternative paths: An application to on-demand transportation," European Journal of Operational Research, Elsevier, vol. 204(1), pages 62-75, July.
    23. Dimitris Bertsimas & Arthur Delarue & Patrick Jaillet & Sébastien Martin, 2019. "Travel Time Estimation in the Age of Big Data," Operations Research, INFORMS, vol. 67(2), pages 498-515, March.
    24. Anastasios D. Vareias & Panagiotis P. Repoussis & Panagiotis P. Repoussi, 2019. "Assessing Customer Service Reliability in Route Planning with Self-Imposed Time Windows and Stochastic Travel Times," Service Science, INFORMS, vol. 53(1), pages 256-281, February.
    25. Guy Desaulniers & Diego Pecin & Claudio Contardo, 2019. "Selective pricing in branch-price-and-cut algorithms for vehicle routing," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 147-168, June.
    26. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    27. Samuel Pelletier & Ola Jabali & Gilbert Laporte, 2016. "50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives," Transportation Science, INFORMS, vol. 50(1), pages 3-22, February.
    28. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
    29. Michel Gendreau & Ola Jabali & Walter Rei, 2016. "50th Anniversary Invited Article—Future Research Directions in Stochastic Vehicle Routing," Transportation Science, INFORMS, vol. 50(4), pages 1163-1173, November.
    30. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    31. Montoya, Alejandro & Guéret, Christelle & Mendoza, Jorge E. & Villegas, Juan G., 2017. "The electric vehicle routing problem with nonlinear charging function," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 87-110.
    32. Michal Kaut, 2014. "A copula-based heuristic for scenario generation," Computational Management Science, Springer, vol. 11(4), pages 503-516, October.
    33. Morganti, Eleonora & Browne, Michael, 2018. "Technical and operational obstacles to the adoption of electric vans in France and the UK: An operator perspective," Transport Policy, Elsevier, vol. 63(C), pages 90-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Jedliński & Mariusz Nürnberg, 2022. "Application of the Experimental Method in the Assessment of the Electromobility Paradigm for Courier Shipments in an Urban Agglomeration," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Stanisław Iwan & Mariusz Nürnberg & Artur Bejger & Kinga Kijewska & Krzysztof Małecki, 2021. "Unloading Bays as Charging Stations for EFV-Based Urban Freight Delivery System—Example of Szczecin," Energies, MDPI, vol. 14(18), pages 1-22, September.
    3. Leandro do C. Martins & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan & Javier Faulin, 2021. "Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in Sustainable Transportation," Energies, MDPI, vol. 14(16), pages 1-30, August.
    4. Florio, Alexandre M. & Gendreau, Michel & Hartl, Richard F. & Minner, Stefan & Vidal, Thibaut, 2023. "Recent advances in vehicle routing with stochastic demands: Bayesian learning for correlated demands and elementary branch-price-and-cut," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1081-1093.
    5. Tomáš Settey & Jozef Gnap & František Synák & Tomáš Skrúcaný & Marek Dočkalik, 2021. "Research into the Impacts of Driving Cycles and Load Weight on the Operation of a Light Commercial Electric Vehicle," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    6. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
    7. Wang, Mengtong & Miao, Lixin & Zhang, Canrong, 2021. "A branch-and-price algorithm for a green location routing problem with multi-type charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    2. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    3. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    4. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    5. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2019. "The electric vehicle routing problem with energy consumption uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 225-255.
    6. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    7. Alvo, Matías & Angulo, Gustavo & Klapp, Mathias A., 2021. "An exact solution approach for an electric bus dispatch problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    8. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    9. Lera-Romero, Gonzalo & Miranda Bront, Juan José & Soulignac, Francisco J., 2024. "A branch-cut-and-price algorithm for the time-dependent electric vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 312(3), pages 978-995.
    10. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    11. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    12. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    13. Schiffer, Maximilian & Walther, Grit, 2018. "Strategic planning of electric logistics fleet networks: A robust location-routing approach," Omega, Elsevier, vol. 80(C), pages 31-42.
    14. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    15. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2018. "Charge scheduling for electric freight vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 246-269.
    16. Goeke, Dominik, 2019. "Granular tabu search for the pickup and delivery problem with time windows and electric vehicles," European Journal of Operational Research, Elsevier, vol. 278(3), pages 821-836.
    17. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    18. Nolz, Pamela C. & Absi, Nabil & Feillet, Dominique & Seragiotto, Clóvis, 2022. "The consistent electric-Vehicle routing problem with backhauls and charging management," European Journal of Operational Research, Elsevier, vol. 302(2), pages 700-716.
    19. Schiffer, Maximilian & Schneider, Michael & Laporte, Gilbert, 2018. "Designing sustainable mid-haul logistics networks with intra-route multi-resource facilities," European Journal of Operational Research, Elsevier, vol. 265(2), pages 517-532.
    20. Virginia Casella & Daniel Fernandez Valderrama & Giulio Ferro & Riccardo Minciardi & Massimo Paolucci & Luca Parodi & Michela Robba, 2022. "Towards the Integration of Sustainable Transportation and Smart Grids: A Review on Electric Vehicles’ Management," Energies, MDPI, vol. 15(11), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:55:y:2021:i:1:p:238-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.