IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v312y2024i3p978-995.html
   My bibliography  Save this article

A branch-cut-and-price algorithm for the time-dependent electric vehicle routing problem with time windows

Author

Listed:
  • Lera-Romero, Gonzalo
  • Miranda Bront, Juan José
  • Soulignac, Francisco J.

Abstract

The adoption of electric vehicles (EVs) within last-mile deliveries is considered one of the key transformations towards more sustainable logistics. The inclusion of EVs introduces new operational constraints to the models such as a restricted driving range and the possibility to perform recharges en route. The discharge of the typical batteries is complex and depends on several variables, including the vehicle travel speed, but most of the approaches assume that the energy consumption depends only on the distance traveled. This becomes relevant in different logistics contexts, such as last-mile distrubtion in large cities and mid-haul logistics in retail, where traffic congestion affects severely the travel speeds. In this paper, we introduce a general version of the Time-Dependent Electric Vehicle Routing Problem with Time Windows (TDEVRPTW), which incorporates the time-dependent nature of the transportation network both in terms of travel times and the energy consumption. We propose a unifying framework to integrate other critical variable times arising during the operations previously studied in the literature, such as the time-dependent waiting times and non-linear charging times. We propose a state of the art branch-cut-and-price (BCP) algorithm. Based on extensive computational experiments, we show that the approach is very effective solving instances with up to 100 customers with different time dependent configurations. From a managerial standpoint, our experiments indicate that neglecting the travel speeds can affect the quality of the solutions obtained, where up to 40 percent of the infeasibilities induced by neglecting the time dependency can be caused by exceeding the battery capacity.

Suggested Citation

  • Lera-Romero, Gonzalo & Miranda Bront, Juan José & Soulignac, Francisco J., 2024. "A branch-cut-and-price algorithm for the time-dependent electric vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 312(3), pages 978-995.
  • Handle: RePEc:eee:ejores:v:312:y:2024:i:3:p:978-995
    DOI: 10.1016/j.ejor.2023.06.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172300509X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.06.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Peng & Veelenturf, Lucas P. & Dabia, Said & Van Woensel, Tom, 2018. "The time-dependent capacitated profitable tour problem with time windows and precedence constraints," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1058-1073.
    2. Guy Desaulniers & Timo Gschwind & Stefan Irnich, 2020. "Variable Fixing for Two-Arc Sequences in Branch-Price-and-Cut Algorithms on Path-Based Models," Transportation Science, INFORMS, vol. 54(5), pages 1526-5447, September.
    3. Ricardo Fukasawa & Qie He & Fernando Santos & Yongjia Song, 2018. "A Joint Vehicle Routing and Speed Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 694-709, November.
    4. Jean-François Cordeau & Gianpaolo Ghiani & Emanuela Guerriero, 2014. "Analysis and Branch-and-Cut Algorithm for the Time-Dependent Travelling Salesman Problem," Transportation Science, INFORMS, vol. 48(1), pages 46-58, February.
    5. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    6. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    7. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    8. Said Dabia & Stefan Ropke & Tom van Woensel & Ton De Kok, 2013. "Branch and Price for the Time-Dependent Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 47(3), pages 380-396, August.
    9. Goeke, D. & Schneider, M., 2015. "Routing a Mixed Fleet of Electric and Conventional Vehicles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65939, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Tagmouti, Mariam & Gendreau, Michel & Potvin, Jean-Yves, 2007. "Arc routing problems with time-dependent service costs," European Journal of Operational Research, Elsevier, vol. 181(1), pages 30-39, August.
    11. Schiffer, Maximilian & Walther, Grit, 2017. "The electric location routing problem with time windows and partial recharging," European Journal of Operational Research, Elsevier, vol. 260(3), pages 995-1013.
    12. Erdoğan, Sevgi & Miller-Hooks, Elise, 2012. "A Green Vehicle Routing Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 100-114.
    13. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    14. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    15. Guy Desaulniers & Fausto Errico & Stefan Irnich & Michael Schneider, 2016. "Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 64(6), pages 1388-1405, December.
    16. Montoya, Alejandro & Guéret, Christelle & Mendoza, Jorge E. & Villegas, Juan G., 2017. "The electric vehicle routing problem with nonlinear charging function," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 87-110.
    17. Huang, Yixiao & Zhao, Lei & Van Woensel, Tom & Gross, Jean-Philippe, 2017. "Time-dependent vehicle routing problem with path flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 169-195.
    18. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    19. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    20. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    21. Schiffer, Maximilian & Klein, Patrick S. & Laporte, Gilbert & Walther, Grit, 2021. "Integrated planning for electric commercial vehicle fleets: A case study for retail mid-haul logistics networks," European Journal of Operational Research, Elsevier, vol. 291(3), pages 944-960.
    22. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    23. Sai Shao & Wei Guan & Bin Ran & Zhengbing He & Jun Bi, 2017. "Electric Vehicle Routing Problem with Charging Time and Variable Travel Time," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-13, January.
    24. Davis, Brian A. & Figliozzi, Miguel A., 2013. "A methodology to evaluate the competitiveness of electric delivery trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 8-23.
    25. Sina Rastani & Bülent Çatay, 2023. "A large neighborhood search-based matheuristic for the load-dependent electric vehicle routing problem with time windows," Annals of Operations Research, Springer, vol. 324(1), pages 761-793, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaohua Chen & Guomin Li, 2024. "Competition between New Energy and Fuel Vehicles with Behavior-Based Pricing Strategies When Considering Environmental Concerns and Green Innovation," Sustainability, MDPI, vol. 16(10), pages 1-34, May.
    2. Vichitkunakorn, Panupong & Emde, Simon & Masae, Makusee & Glock, Christoph H. & Grosse, Eric H., 2024. "Locating charging stations and routing drones for efficient automated stocktaking," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1129-1145.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    2. Goeke, Dominik, 2019. "Granular tabu search for the pickup and delivery problem with time windows and electric vehicles," European Journal of Operational Research, Elsevier, vol. 278(3), pages 821-836.
    3. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    4. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    5. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    6. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    7. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    8. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
    9. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    10. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    11. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    12. Sadati, Mir Ehsan Hesam & Çatay, Bülent, 2021. "A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    13. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    14. Wang, Mengtong & Miao, Lixin & Zhang, Canrong, 2021. "A branch-and-price algorithm for a green location routing problem with multi-type charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    15. Schiffer, Maximilian & Walther, Grit, 2018. "Strategic planning of electric logistics fleet networks: A robust location-routing approach," Omega, Elsevier, vol. 80(C), pages 31-42.
    16. Tahami, Hesamoddin & Rabadi, Ghaith & Haouari, Mohamed, 2020. "Exact approaches for routing capacitated electric vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    17. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    18. Li, Lu & Lo, Hong K. & Huang, Wei & Xiao, Feng, 2021. "Mixed bus fleet location-routing-scheduling under range uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 155-179.
    19. Schiffer, Maximilian & Schneider, Michael & Laporte, Gilbert, 2018. "Designing sustainable mid-haul logistics networks with intra-route multi-resource facilities," European Journal of Operational Research, Elsevier, vol. 265(2), pages 517-532.
    20. Wang, Weiquan & Zhao, Jingyi, 2023. "Partial linear recharging strategy for the electric fleet size and mix vehicle routing problem with time windows and recharging stations," European Journal of Operational Research, Elsevier, vol. 308(2), pages 929-948.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:312:y:2024:i:3:p:978-995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.