IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v11y2014i4p503-516.html
   My bibliography  Save this article

A copula-based heuristic for scenario generation

Author

Listed:
  • Michal Kaut

Abstract

This paper presents a new heuristic for generating scenarios for two-stage stochastic programs. The method uses copulas to describe the dependence between the marginal distributions, instead of the more common correlations. The heuristic is then tested on a simple portfolio-selection model, and compared to two other scenario-generation methods. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Michal Kaut, 2014. "A copula-based heuristic for scenario generation," Computational Management Science, Springer, vol. 11(4), pages 503-516, October.
  • Handle: RePEc:spr:comgts:v:11:y:2014:i:4:p:503-516
    DOI: 10.1007/s10287-013-0184-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-013-0184-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-013-0184-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    2. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    3. Tim Helge Hultberg, 2007. "FLOPC++ An Algebraic Modeling Language Embedded in C++," Operations Research Proceedings, in: Karl-Heinz Waldmann & Ulrike M. Stocker (ed.), Operations Research Proceedings 2006, pages 187-190, Springer.
    4. Vaagen, Hajnalka & Wallace, Stein W., 2008. "Product variety arising from hedging in the fashion supply chains," International Journal of Production Economics, Elsevier, vol. 114(2), pages 431-455, August.
    5. Michal Kaut & Stein Wallace, 2011. "Shape-based scenario generation using copulas," Computational Management Science, Springer, vol. 8(1), pages 181-199, April.
    6. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    7. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    8. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
    2. Zhang, Dongqing & Wallace, Stein W. & Guo, Zhaoxia & Dong, Yucheng & Kaut, Michal, 2021. "On scenario construction for stochastic shortest path problems in real road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    3. Zhe Yan & Zhiping Chen & Giorgio Consigli & Jia Liu & Ming Jin, 2020. "A copula-based scenario tree generation algorithm for multiperiod portfolio selection problems," Annals of Operations Research, Springer, vol. 292(2), pages 849-881, September.
    4. Nonthachote Chatsanga & Andrew J. Parkes, 2017. "Two-Stage Stochastic International Portfolio Optimisation under Regular-Vine-Copula-Based Scenarios," Papers 1704.01174, arXiv.org.
    5. Domínguez, R. & Vitali, S., 2021. "Multi-chronological hierarchical clustering to solve capacity expansion problems with renewable sources," Energy, Elsevier, vol. 227(C).
    6. Vit Prochazka & Stein W. Wallace, 2020. "Scenario tree construction driven by heuristic solutions of the optimization problem," Computational Management Science, Springer, vol. 17(2), pages 277-307, June.
    7. Wang, Shuang & Wallace, Stein W. & Lu, Jing & Gu, Yewen, 2020. "Handling financial risks in crude oil imports: Taking into account crude oil prices as well as country and transportation risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    8. Zhaoxia Guo & Stein W. Wallace & Michal Kaut, 2019. "Vehicle Routing with Space- and Time-Correlated Stochastic Travel Times: Evaluating the Objective Function," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 654-670, October.
    9. Rocha, Paula & Kaut, Michal & Siddiqui, Afzal S., 2016. "Energy-efficient building retrofits: An assessment of regulatory proposals under uncertainty," Energy, Elsevier, vol. 101(C), pages 278-287.
    10. Xiaolei He & Weiguo Zhang, 2024. "Vine copula‐based scenario tree generation approaches for portfolio optimization," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1936-1955, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long Kang, 2011. "Asset allocation in a Bayesian copula-GARCH framework: An application to the ‘passive funds versus active funds’ problem," Journal of Asset Management, Palgrave Macmillan, vol. 12(1), pages 45-66, April.
    2. Boubaker, Heni & Sghaier, Nadia, 2013. "Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 361-377.
    3. Zhe Yan & Zhiping Chen & Giorgio Consigli & Jia Liu & Ming Jin, 2020. "A copula-based scenario tree generation algorithm for multiperiod portfolio selection problems," Annals of Operations Research, Springer, vol. 292(2), pages 849-881, September.
    4. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    5. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    6. Roch, Oriol & Alegre, Antonio, 2006. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1312-1329, November.
    7. Henryk Gurgul & Robert Syrek, 2010. "Polish stock market and some foreign markets - dependence analysis by regime-switching copulas," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 8, pages 21-39.
    8. Mensah, Jones Odei & Premaratne, Gamini, 2014. "Dependence patterns among Banking Sectors in Asia: A Copula Approach," MPRA Paper 60119, University Library of Munich, Germany.
    9. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.
    10. Zhichao Zhang & Li Ding & Fan Zhang & Zhuang Zhang, 2015. "Optimal Currency Composition for China's Foreign Reserves: A Copula Approach," The World Economy, Wiley Blackwell, vol. 38(12), pages 1947-1965, December.
    11. Tong, Bin & Diao, Xundi & Wu, Chongfeng, 2015. "Modeling asymmetric and dynamic dependence of overnight and daytime returns: An empirical evidence from China Banking Sector," Economic Modelling, Elsevier, vol. 51(C), pages 366-382.
    12. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.
    13. Sukcharoen, Kunlapath & Zohrabyan, Tatevik & Leatham, David & Wu, Ximing, 2014. "Interdependence of oil prices and stock market indices: A copula approach," Energy Economics, Elsevier, vol. 44(C), pages 331-339.
    14. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2011. "International diversification: A copula approach," Journal of Banking & Finance, Elsevier, vol. 35(2), pages 403-417, February.
    15. Nonthachote Chatsanga & Andrew J. Parkes, 2017. "Two-Stage Stochastic International Portfolio Optimisation under Regular-Vine-Copula-Based Scenarios," Papers 1704.01174, arXiv.org.
    16. Tong, Bin & Wu, Chongfeng & Zhou, Chunyang, 2013. "Modeling the co-movements between crude oil and refined petroleum markets," Energy Economics, Elsevier, vol. 40(C), pages 882-897.
    17. Michal Kaut & Stein Wallace, 2011. "Shape-based scenario generation using copulas," Computational Management Science, Springer, vol. 8(1), pages 181-199, April.
    18. Muteba Mwamba, John & Mokwena, Paula, 2013. "International diversification and dependence structure of equity portfolios during market crashes: the Archimedean copula approach," MPRA Paper 64384, University Library of Munich, Germany.
    19. Wang, Yi-Chiuan & Wu, Jyh-Lin & Lai, Yi-Hao, 2013. "A revisit to the dependence structure between the stock and foreign exchange markets: A dependence-switching copula approach," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1706-1719.
    20. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:11:y:2014:i:4:p:503-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.