IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13872-d703207.html
   My bibliography  Save this article

Research into the Impacts of Driving Cycles and Load Weight on the Operation of a Light Commercial Electric Vehicle

Author

Listed:
  • Tomáš Settey

    (Department of Road and Urban Transport, Faculty of Operation and Economics of Transport and Communications, University of Zilina, 010 26 Žilina, Slovakia)

  • Jozef Gnap

    (Department of Road and Urban Transport, Faculty of Operation and Economics of Transport and Communications, University of Zilina, 010 26 Žilina, Slovakia)

  • František Synák

    (Department of Road and Urban Transport, Faculty of Operation and Economics of Transport and Communications, University of Zilina, 010 26 Žilina, Slovakia)

  • Tomáš Skrúcaný

    (Department of Road and Urban Transport, Faculty of Operation and Economics of Transport and Communications, University of Zilina, 010 26 Žilina, Slovakia)

  • Marek Dočkalik

    (Department of Road and Urban Transport, Faculty of Operation and Economics of Transport and Communications, University of Zilina, 010 26 Žilina, Slovakia)

Abstract

The European Parliament has adopted Directive 2019/1161 on the promotion of environmentally friendly and energy-efficient road transport vehicles, which also defines the obligations and forms of support for the procurement of environmentally friendly vehicles in urban logistics. The increase in the number of shipments delivered within e-commerce, which is also the result of the COVID-19 pandemic, requires a transition to a sustainable logistics system. New research questions are being raised in the preparation of new projects for the introduction of small electric commercial vehicles in particular. One of the main research questions about deployment itself is whether light commercial electric vehicles are able to fully replace conventionally powered vehicles. What operating conditions are optimal for the operation of them? How does load weight affect the energy efficiency of operating a light commercial electric vehicle? The authors decided to carry out research into the impacts of weight and the nature of a driving cycle under laboratory conditions to eliminate all external factors that could distort individual measurements and their results. In order to simulate driving cycles, an urban driving cycle was designed on the basis of the course of speed, acceleration, deceleration and slope conditions of roads in the selected regional city of Žilina (Slovakia). In the case of the operation of an electrically powered light commercial vehicle, the impact of load weight on the range of the vehicle is low, and is below the level of the theoretical maximum range of the vehicle in urban logistics applications. The operation of electrically powered vehicles in hilly terrains with relatively longer gradients and steeper slopes increases electricity consumption and, thereby, reduces their range.

Suggested Citation

  • Tomáš Settey & Jozef Gnap & František Synák & Tomáš Skrúcaný & Marek Dočkalik, 2021. "Research into the Impacts of Driving Cycles and Load Weight on the Operation of a Light Commercial Electric Vehicle," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13872-:d:703207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13872/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adrian Serrano-Hernandez & Aitor Ballano & Javier Faulin, 2021. "Selecting Freight Transportation Modes in Last-Mile Urban Distribution in Pamplona (Spain): An Option for Drone Delivery in Smart Cities," Energies, MDPI, vol. 14(16), pages 1-17, August.
    2. Fabio Orecchini & Adriano Santiangeli & Fabrizio Zuccari, 2020. "Real Drive Well-to-Wheel Energy Analysis of Conventional and Electrified Car Powertrains," Energies, MDPI, vol. 13(18), pages 1-21, September.
    3. Shaobo, Xie & Qiankun, Zhang & Xiaosong, Hu & Yonggang, Liu & Xianke, Lin, 2021. "Battery sizing for plug-in hybrid electric buses considering variable route lengths," Energy, Elsevier, vol. 226(C).
    4. Krystian Pietrzak & Oliwia Pietrzak, 2020. "Environmental Effects of Electromobility in a Sustainable Urban Public Transport," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    5. Jingeun Song & Junepyo Cha, 2021. "Analysis of Driving Dynamics Considering Driving Resistances in On-Road Driving," Energies, MDPI, vol. 14(12), pages 1-16, June.
    6. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
    7. Amaya, Johanna & Delgado-Lindeman, Maira & Arellana, Julian & Allen, Jaime, 2021. "Urban freight logistics: What do citizens perceive?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    8. Khayyam Masood & Matteo Zoppi & Vincent Fremont & Rezia M. Molfino, 2021. "From Drive-By-Wire to Autonomous Vehicle: Urban Freight Vehicle Perspectives," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    9. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2019. "Urban public charging station locating method for electric vehicles based on land use approach," Journal of Transport Geography, Elsevier, vol. 74(C), pages 173-180.
    10. Vladimír Konečný & Jozef Gnap & Tomáš Settey & František Petro & Tomáš Skrúcaný & Tomasz Figlus, 2020. "Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe," Energies, MDPI, vol. 13(15), pages 1-23, July.
    11. Iwona Komorska & Andrzej Puchalski & Andrzej Niewczas & Marcin Ślęzak & Tomasz Szczepański, 2021. "Adaptive Driving Cycles of EVs for Reducing Energy Consumption," Energies, MDPI, vol. 14(9), pages 1-18, May.
    12. Wei, Changyin & Sun, Xiuxiu & Chen, Yong & Zang, Libin & Bai, Shujie, 2021. "Comparison of architecture and adaptive energy management strategy for plug-in hybrid electric logistics vehicle," Energy, Elsevier, vol. 230(C).
    13. Tengda Hu & Yunwu Li & Zhi Zhang & Ying Zhao & Dexiong Liu, 2021. "Energy Management Strategy of Hybrid Energy Storage System Based on Road Slope Information," Energies, MDPI, vol. 14(9), pages 1-18, April.
    14. Yashraj Tripathy & Andrew McGordon & Chee Tong John Low, 2018. "A New Consideration for Validating Battery Performance at Low Ambient Temperatures," Energies, MDPI, vol. 11(9), pages 1-16, September.
    15. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2021. "Electric light commercial vehicles for a cleaner urban goods distribution. Are they cost competitive?," Research in Transportation Economics, Elsevier, vol. 85(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    2. Jose Alejandro Cano & Abraham Londoño-Pineda & Carolina Rodas, 2022. "Sustainable Logistics for E-Commerce: A Literature Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    3. Edgar Sokolovskij & Arkadiusz Małek & Jacek Caban & Agnieszka Dudziak & Jonas Matijošius & Andrzej Marciniak, 2023. "Selection of a Photovoltaic Carport Power for an Electric Vehicle," Energies, MDPI, vol. 16(7), pages 1-16, March.
    4. Stefan Tabacu & Dragos Popa, 2023. "Backward-Facing Analysis for the Preliminary Estimation of the Vehicle Fuel Consumption," Sustainability, MDPI, vol. 15(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimír Konečný & Jozef Gnap & Tomáš Settey & František Petro & Tomáš Skrúcaný & Tomasz Figlus, 2020. "Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe," Energies, MDPI, vol. 13(15), pages 1-23, July.
    2. Gnap Jozef & Dočkalik Marek & Dydkowski Grzegorz, 2021. "Examination of the Development of New Bus Registrations with Alternative Powertrains in Europe," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 147-158, January.
    3. Sandra Alvarez Gallo & Julien Maheut, 2023. "Multi-Criteria Analysis for the Evaluation of Urban Freight Logistics Solutions: A Systematic Literature Review," Mathematics, MDPI, vol. 11(19), pages 1-24, September.
    4. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
    5. Cesar Eduardo Leite & Sérgio Ronaldo Granemann & Ari Melo Mariano & Leise Kelli de Oliveira, 2022. "Opinion of Residents about the Freight Transport and Its Influence on the Quality of Life: An Analysis for Brasília (Brazil)," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    6. Oliwia Pietrzak & Krystian Pietrzak, 2021. "The Economic Effects of Electromobility in Sustainable Urban Public Transport," Energies, MDPI, vol. 14(4), pages 1-28, February.
    7. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    8. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    9. Tuyen Nguyen & Yannick Rauch & Reiner Kriesten & Daniela Chrenko, 2023. "Approach for a Global Route-Based Energy Management System for Electric Vehicles with a Hybrid Energy Storage System," Energies, MDPI, vol. 16(2), pages 1-20, January.
    10. Kinga Kijewska & João Guilherme Costa Braga França & Leise Kelli de Oliveira & Stanislaw Iwan, 2022. "Evaluation of Urban Mobility Problems and Freight Solutions from Residents’ Perspectives: A Comparison of Belo Horizonte (Brazil) and Szczecin (Poland)," Energies, MDPI, vol. 15(3), pages 1-22, January.
    11. Artur Jaworski & Vasyl Mateichyk & Hubert Kuszewski & Maksymilian Mądziel & Paweł Woś & Bożena Babiarz & Mirosław Śmieszek & Sławomir Porada, 2023. "Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NO X Emissions Reduction in Sustainable Public Transport," Energies, MDPI, vol. 16(19), pages 1-18, October.
    12. Barouch Giechaskiel & Dimitrios Komnos & Georgios Fontaras, 2021. "Impacts of Extreme Ambient Temperatures and Road Gradient on Energy Consumption and CO 2 Emissions of a Euro 6d-Temp Gasoline Vehicle," Energies, MDPI, vol. 14(19), pages 1-20, September.
    13. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    14. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    15. Song, Jingeun & Cha, Junepyo, 2022. "Development of prediction methodology for CO2 emissions and fuel economy of light duty vehicle," Energy, Elsevier, vol. 244(PB).
    16. Jiacong Xu & Xuefeng Li & Yiyong Pan & Mingyang Du, 2022. "Satisfaction of Logistics Dispatchers Who Use Electric Tricycles\linebreak for the Last Mile of Delivery: Perspective from Policy Intervention," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    17. Ryzhkov, Alexander & Sarzhan, Yuliya, 2020. "Market initiative and central planning: A study of the Moscow bus network," Research in Transportation Economics, Elsevier, vol. 83(C).
    18. Paweł Pistelok & Daniel Štraub, 2021. "Evaluation of the Road Policy in the Light of Vision Zero in Jaworzno, Poland," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    19. Zhao, Bozhi & Suo, Yining & Tang, Li & Li, Chenglong & Fu, Mengying & Huang, Longyang, 2024. "Urban air mobility for time-sensitive goods with explicit customer preferences: A case study on Chengdu," Journal of Air Transport Management, Elsevier, vol. 118(C).
    20. Ojeda Diaz, Alfredo J. & Cantillo, Víctor & Arellana, Julián, 2023. "Understanding how individuals perceive changes in the built environment and the transport system after implementing a BRT system. The case of Barranquilla, Colombia," Journal of Transport Geography, Elsevier, vol. 110(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13872-:d:703207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.