IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v306y2023i3p1081-1093.html
   My bibliography  Save this article

Recent advances in vehicle routing with stochastic demands: Bayesian learning for correlated demands and elementary branch-price-and-cut

Author

Listed:
  • Florio, Alexandre M.
  • Gendreau, Michel
  • Hartl, Richard F.
  • Minner, Stefan
  • Vidal, Thibaut

Abstract

We consider the vehicle routing problem with stochastic demands (VRPSD), a stochastic variant of the well-known VRP in which demands are only revealed upon arrival of the vehicle at each customer. Motivated by the significant recent progress on VRPSD research, we begin this paper by summarizing the key new results and methods for solving the problem. In doing so, we discuss the main challenges associated with solving the VRPSD under the chance-constraint and the restocking-based perspectives. Once we cover the current state-of-the-art, we introduce two major methodological contributions. First, we present a branch-price-and-cut (BP&C) algorithm for the VRPSD under optimal restocking. The method, which is based on the pricing of elementary routes, compares favorably with previous algorithms and allows the solution of several open benchmark instances. Second, we develop a demand model for dealing with correlated customer demands. The central concept in this model is the “external factor”, which represents unknown covariates that affect all demands. We present a Bayesian-based, iterated learning procedure to refine our knowledge about the external factor as customer demands are revealed. This updated knowledge is then used to prescribe optimal replenishment decisions under demand correlation. Computational results demonstrate the efficiency of the new BP&C method and show that cost savings above 10% may be achieved when restocking decisions take account of demand correlation. Lastly, we motivate a few research perspectives that, as we believe, should shape future research on the VRPSD.

Suggested Citation

  • Florio, Alexandre M. & Gendreau, Michel & Hartl, Richard F. & Minner, Stefan & Vidal, Thibaut, 2023. "Recent advances in vehicle routing with stochastic demands: Bayesian learning for correlated demands and elementary branch-price-and-cut," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1081-1093.
  • Handle: RePEc:eee:ejores:v:306:y:2023:i:3:p:1081-1093
    DOI: 10.1016/j.ejor.2022.10.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722008566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.10.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertazzi, Luca & Secomandi, Nicola, 2018. "Faster rollout search for the vehicle routing problem with stochastic demands and restocking," European Journal of Operational Research, Elsevier, vol. 270(2), pages 487-497.
    2. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A hybrid recourse policy for the vehicle routing problem with stochastic demands," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 269-298, September.
    3. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
    4. Chrysanthos E. Gounaris & Panagiotis P. Repoussis & Christos D. Tarantilis & Wolfram Wiesemann & Christodoulos A. Floudas, 2016. "An Adaptive Memory Programming Framework for the Robust Capacitated Vehicle Routing Problem," Transportation Science, INFORMS, vol. 50(4), pages 1239-1260, November.
    5. Aykagan Ak & Alan L. Erera, 2007. "A Paired-Vehicle Recourse Strategy for the Vehicle-Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 41(2), pages 222-237, May.
    6. Richard C. Larson, 1988. "Transporting Sludge to the 106-Mile Site: An Inventory/Routing Model for Fleet Sizing and Logistics System Design," Transportation Science, INFORMS, vol. 22(3), pages 186-198, August.
    7. Moshe Dror & Gilbert Laporte & Pierre Trudeau, 1989. "Vehicle Routing with Stochastic Demands: Properties and Solution Frameworks," Transportation Science, INFORMS, vol. 23(3), pages 166-176, August.
    8. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A Rule-Based Recourse for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 53(5), pages 1334-1353, September.
    9. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    10. Noorizadegan, Mahdi & Chen, Bo, 2018. "Vehicle routing with probabilistic capacity constraints," European Journal of Operational Research, Elsevier, vol. 270(2), pages 544-555.
    11. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    12. Salavati-Khoshghalb, Majid & Gendreau, Michel & Jabali, Ola & Rei, Walter, 2019. "An exact algorithm to solve the vehicle routing problem with stochastic demands under an optimal restocking policy," European Journal of Operational Research, Elsevier, vol. 273(1), pages 175-189.
    13. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    14. Yan, Shangyao & Lin, Jenn-Rong & Lai, Chun-Wei, 2013. "The planning and real-time adjustment of courier routing and scheduling under stochastic travel times and demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 34-48.
    15. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    16. Krishna Chepuri & Tito Homem-de-Mello, 2005. "Solving the Vehicle Routing Problem with Stochastic Demands using the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 153-181, February.
    17. James R. Yee & Bruce L. Golden, 1980. "A note on determining operating strategies for probabilistic vehicle routing," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 27(1), pages 159-163, March.
    18. Frank A. Tillman, 1969. "The Multiple Terminal Delivery Problem with Probabilistic Demands," Transportation Science, INFORMS, vol. 3(3), pages 192-204, August.
    19. François V. Louveaux & Juan-José Salazar-González, 2018. "Exact Approach for the Vehicle Routing Problem with Stochastic Demands and Preventive Returns," Service Science, INFORMS, vol. 52(6), pages 1463-1478, December.
    20. Chen, Lijian & Chiang, Wen-Chyuan & Russell, Robert & Chen, Jun & Sun, Dengfeng, 2018. "The probabilistic vehicle routing problem with service guarantees," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 149-164.
    21. Michel Gendreau & Ola Jabali & Walter Rei, 2016. "50th Anniversary Invited Article—Future Research Directions in Stochastic Vehicle Routing," Transportation Science, INFORMS, vol. 50(4), pages 1163-1173, November.
    22. Pedro Munari & Alfredo Moreno & Jonathan De La Vega & Douglas Alem & Jacek Gondzio & Reinaldo Morabito, 2019. "The Robust Vehicle Routing Problem with Time Windows: Compact Formulation and Branch-Price-and-Cut Method," Transportation Science, INFORMS, vol. 53(4), pages 1043-1066, July.
    23. Florio, Alexandre M. & Hartl, Richard F. & Minner, Stefan, 2020. "Optimal a priori tour and restocking policy for the single-vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 285(1), pages 172-182.
    24. Jaunich, Megan K. & Levis, James W. & DeCarolis, Joseph F. & Gaston, Eliana V. & Barlaz, Morton A. & Bartelt-Hunt, Shannon L. & Jones, Elizabeth G. & Hauser, Lauren & Jaikumar, Rohit, 2016. "Characterization of municipal solid waste collection operations," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 92-102.
    25. Alexandre M. Florio & Richard F. Hartl & Stefan Minner & Juan-José Salazar-González, 2021. "A Branch-and-Price Algorithm for the Vehicle Routing Problem with Stochastic Demands and Probabilistic Duration Constraints," Transportation Science, INFORMS, vol. 55(1), pages 122-138, 1-2.
    26. Alexandre M. Florio & Richard F. Hartl & Stefan Minner, 2020. "New Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 54(4), pages 1073-1090, July.
    27. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    28. Laporte, Gilbert & Louveaux, Francois & Mercure, Helene, 1989. "Models and exact solutions for a class of stochastic location-routing problems," European Journal of Operational Research, Elsevier, vol. 39(1), pages 71-78, March.
    29. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    30. Uchoa, Eduardo & Pecin, Diego & Pessoa, Artur & Poggi, Marcus & Vidal, Thibaut & Subramanian, Anand, 2017. "New benchmark instances for the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 257(3), pages 845-858.
    31. M Singer & P Donoso & S Jara, 2002. "Fleet configuration subject to stochastic demand: an application in the distribution of liquefied petroleum gas," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 961-971, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Pengyu & Yu, Kaize & Chao, Xiuli & Chen, Zhibin, 2023. "An online reinforcement learning approach to charging and order-dispatching optimization for an e-hailing electric vehicle fleet," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1218-1233.
    2. Han, Jialin & Zhang, Jiaxiang & Guo, Haoyue & Zhang, Ning, 2024. "Optimizing location-routing and demand allocation in the household waste collection system using a branch-and-price algorithm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 958-975.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De La Vega, Jonathan & Gendreau, Michel & Morabito, Reinaldo & Munari, Pedro & Ordóñez, Fernando, 2023. "An integer L-shaped algorithm for the vehicle routing problem with time windows and stochastic demands," European Journal of Operational Research, Elsevier, vol. 308(2), pages 676-695.
    2. Alexandre M. Florio & Richard F. Hartl & Stefan Minner, 2020. "New Exact Algorithm for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 54(4), pages 1073-1090, July.
    3. Karels, Vincent C.G. & Rei, Walter & Veelenturf, Lucas P. & Van Woensel, Tom, 2024. "A vehicle routing problem with multiple service agreements," European Journal of Operational Research, Elsevier, vol. 313(1), pages 129-145.
    4. Alexandre M. Florio & Richard F. Hartl & Stefan Minner & Juan-José Salazar-González, 2021. "A Branch-and-Price Algorithm for the Vehicle Routing Problem with Stochastic Demands and Probabilistic Duration Constraints," Transportation Science, INFORMS, vol. 55(1), pages 122-138, 1-2.
    5. Florio, Alexandre M. & Hartl, Richard F. & Minner, Stefan, 2020. "Optimal a priori tour and restocking policy for the single-vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 285(1), pages 172-182.
    6. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
    7. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    8. Reusken, Meike & Laporte, Gilbert & Rohmer, Sonja U.K. & Cruijssen, Frans, 2024. "Vehicle routing with stochastic demand, service and waiting times — The case of food bank collection problems," European Journal of Operational Research, Elsevier, vol. 317(1), pages 111-127.
    9. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A Rule-Based Recourse for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 53(5), pages 1334-1353, September.
    10. Prasanna Balaprakash & Mauro Birattari & Thomas Stützle & Marco Dorigo, 2015. "Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers," Computational Optimization and Applications, Springer, vol. 61(2), pages 463-487, June.
    11. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    12. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2010. "The Vehicle Routing Problem with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 44(4), pages 474-492, November.
    13. Artur Alves Pessoa & Michael Poss & Ruslan Sadykov & François Vanderbeck, 2021. "Branch-Cut-and-Price for the Robust Capacitated Vehicle Routing Problem with Knapsack Uncertainty," Operations Research, INFORMS, vol. 69(3), pages 739-754, May.
    14. Pedro Munari & Alfredo Moreno & Jonathan De La Vega & Douglas Alem & Jacek Gondzio & Reinaldo Morabito, 2019. "The Robust Vehicle Routing Problem with Time Windows: Compact Formulation and Branch-Price-and-Cut Method," Transportation Science, INFORMS, vol. 53(4), pages 1043-1066, July.
    15. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    16. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    17. Luca Bertazzi & Nicola Secomandi, 2020. "Technical Note—Worst-Case Benefit of Restocking for the Vehicle Routing Problem with Stochastic Demands," Operations Research, INFORMS, vol. 68(3), pages 671-675, May.
    18. Wen-Huei Yang & Kamlesh Mathur & Ronald H. Ballou, 2000. "Stochastic Vehicle Routing Problem with Restocking," Transportation Science, INFORMS, vol. 34(1), pages 99-112, February.
    19. Novoa, Clara & Storer, Robert, 2009. "An approximate dynamic programming approach for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 196(2), pages 509-515, July.
    20. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:306:y:2023:i:3:p:1081-1093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.