IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v242y2015i2p631-643.html
   My bibliography  Save this article

An exact solution algorithm for maximizing the fleet availability of a unit of aircraft subject to flight and maintenance requirements

Author

Listed:
  • Gavranis, Andreas
  • Kozanidis, George

Abstract

We address the Flight and Maintenance Planning (FMP) problem, i.e., the problem of deciding which available aircraft to fly and for how long, and which grounded aircraft to perform maintenance operations on in a group of aircraft that comprise a unit. The aim is to maximize the unit fleet availability over a multi-period planning horizon, while also ensuring that certain flight and maintenance requirements are satisfied. Heuristic approaches that are used in practice to solve the FMP problem often perform poorly, generating solutions that are far from the optimum. On the other hand, the exact optimization models that have been developed to tackle the problem handle small problems effectively, but tend to be computationally inefficient for larger problems, such as the ones that arise in practice. With these in mind, we develop an exact solution algorithm for the FMP problem, which is capable of identifying the optimal solution of considerably large realistic problems in reasonable computational times. The algorithm solves suitable relaxations of the original problem, utilizing valid cuts that guide the search towards the optimal solution. We present extensive experimental results, which demonstrate that the algorithm's performance on realistic problems is superior to that of two popular commercial optimization software packages, whereas the opposite is true for a class of problems with special characteristics that deviate considerably from those of realistic problems. The important conclusion of this research is that the proposed algorithm, complemented by generic optimization software, can handle effectively a large variety of FMP problem instances.

Suggested Citation

  • Gavranis, Andreas & Kozanidis, George, 2015. "An exact solution algorithm for maximizing the fleet availability of a unit of aircraft subject to flight and maintenance requirements," European Journal of Operational Research, Elsevier, vol. 242(2), pages 631-643.
  • Handle: RePEc:eee:ejores:v:242:y:2015:i:2:p:631-643
    DOI: 10.1016/j.ejor.2014.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714008376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ville Mattila & Kai Virtanen & Tuomas Raivio, 2008. "Improving Maintenance Decision Making in the Finnish Air Force Through Simulation," Interfaces, INFORMS, vol. 38(3), pages 187-201, June.
    2. George Kozanidis & Andreas Gavranis & George Liberopoulos, 2014. "Heuristics for flight and maintenance planning of mission aircraft," Annals of Operations Research, Springer, vol. 221(1), pages 211-238, October.
    3. Nima Safaei & Dragan Banjevic & Andrew Jardine, 2011. "Workforce-constrained maintenance scheduling for military aircraft fleet: a case study," Annals of Operations Research, Springer, vol. 186(1), pages 295-316, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cha, Guesik & Park, Junseok & Moon, Ilkyeong, 2023. "Military aircraft flight and maintenance planning model considering heterogeneous maintenance tasks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Qin, Yichen & Ng, Kam K.H., 2023. "Analysing the impact of collaborations between airlines and maintenance service company under MRO outsourcing mode: Perspective from airline's operations," Journal of Air Transport Management, Elsevier, vol. 109(C).
    3. Gabrijela Obradović & Ann-Brith Strömberg & Kristian Lundberg, 2023. "Simultaneous scheduling of replacement and repair of common components in operating systems," Annals of Operations Research, Springer, vol. 322(1), pages 147-165, March.
    4. Feng, Qiang & Bi, Xiong & Zhao, Xiujie & Chen, Yiran & Sun, Bo, 2017. "Heuristic hybrid game approach for fleet condition-based maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 166-176.
    5. Carlos Lagos & Felipe Delgado & Mathias A. Klapp, 2020. "Dynamic Optimization for Airline Maintenance Operations," Transportation Science, INFORMS, vol. 54(4), pages 998-1015, July.
    6. Zhang, Qin & Liu, Yu & Xiahou, Tangfan & Huang, Hong-Zhong, 2023. "A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Franco Peschiera & Robert Dell & Johannes Royset & Alain Haït & Nicolas Dupin & Olga Battaïa, 2021. "A novel solution approach with ML-based pseudo-cuts for the Flight and Maintenance Planning problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 635-664, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marvin L. King & David R. Galbreath & Alexandra M. Newman & Amanda S. Hering, 2020. "Combining regression and mixed-integer programming to model counterinsurgency," Annals of Operations Research, Springer, vol. 292(1), pages 287-320, September.
    2. Feng, Qiang & Bi, Xiong & Zhao, Xiujie & Chen, Yiran & Sun, Bo, 2017. "Heuristic hybrid game approach for fleet condition-based maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 166-176.
    3. George Kozanidis & Andreas Gavranis & Eftychia Kostarelou, 2012. "Mixed integer least squares optimization for flight and maintenance planning of mission aircraft," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(3‐4), pages 212-229, April.
    4. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "A model enhancement heuristic for building robust aircraft maintenance personnel rosters with stochastic constraints," European Journal of Operational Research, Elsevier, vol. 246(2), pages 661-673.
    5. Cha, Guesik & Park, Junseok & Moon, Ilkyeong, 2023. "Military aircraft flight and maintenance planning model considering heterogeneous maintenance tasks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    6. George Kozanidis & Andreas Gavranis & George Liberopoulos, 2014. "Heuristics for flight and maintenance planning of mission aircraft," Annals of Operations Research, Springer, vol. 221(1), pages 211-238, October.
    7. Dilaver, Halit Metehan & Akçay, Alp & van Houtum, Geert-Jan, 2023. "Integrated planning of asset-use and dry-docking for a fleet of maritime assets," International Journal of Production Economics, Elsevier, vol. 256(C).
    8. Yonit Barron, 2018. "Group maintenance policies for an R-out-of-N system with phase-type distribution," Annals of Operations Research, Springer, vol. 261(1), pages 79-105, February.
    9. Turan, Hasan Hüseyin & Jalalvand, Fatemeh & Elsawah, Sondoss & Ryan, Michael J., 2022. "A joint problem of strategic workforce planning and fleet renewal: With an application in defense," European Journal of Operational Research, Elsevier, vol. 296(2), pages 615-634.
    10. Khaled Alhamad & Yousuf Alkhezi, 2024. "Hybrid Genetic Algorithm and Tabu Search for Solving Preventive Maintenance Scheduling Problem for Cogeneration Plants," Mathematics, MDPI, vol. 12(12), pages 1-26, June.
    11. Zhang, Qin & Liu, Yu & Xiahou, Tangfan & Huang, Hong-Zhong, 2023. "A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    13. Joachim Arts & Simme Flapper, 2015. "Aggregate overhaul and supply chain planning for rotables," Annals of Operations Research, Springer, vol. 224(1), pages 77-100, January.
    14. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    15. Pritibhushan Sinha, 2012. "A random maintenance scheduling model to reduce fault diagnosis time," Annals of Operations Research, Springer, vol. 201(1), pages 441-447, December.
    16. Changjiu Li & Yong Zhang & Xichao Su & Xinwei Wang, 2022. "An Improved Optimization Algorithm for Aeronautical Maintenance and Repair Task Scheduling Problem," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    17. Michael D. Teter & Johannes O. Royset & Alexandra M. Newman, 2019. "Modeling uncertainty of expert elicitation for use in risk-based optimization," Annals of Operations Research, Springer, vol. 280(1), pages 189-210, September.
    18. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    19. Khaled Alhamad & Rym M’Hallah & Cormac Lucas, 2021. "A Mathematical Program for Scheduling Preventive Maintenance of Cogeneration Plants with Production," Mathematics, MDPI, vol. 9(14), pages 1-12, July.
    20. Nasuh Buyukkaramikli & Henny Ooijen & J. Bertrand, 2015. "Integrating inventory control and capacity management at a maintenance service provider," Annals of Operations Research, Springer, vol. 231(1), pages 185-206, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:242:y:2015:i:2:p:631-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.