IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v53y2019i3p708-727.html
   My bibliography  Save this article

The Berth Allocation Problem with Channel Restrictions

Author

Listed:
  • Paul Corry

    (Queensland University of Technology, Brisbane, Queensland 4000, Australia)

  • Christian Bierwirth

    (Martin-Luther-Universität of Halle-Wittenberg, 06108 Halle, Germany)

Abstract

Shipping channels are often a constraint to port capacity because of the significant capital cost and environmental impact of channel dredging. Channels are often narrow in places, which constrains the capability of vessels passing in opposing directions. Capacity impacts of channel operations are significant in tidally restricted ports, where deep draft vessels are able to move through the channel only during narrow windows around high tide to maintain sufficient under-keel clearance. There has been much research to date around berth allocation and sequencing, but in channel-constrained ports, the value of these existing approaches can be limited. This is particularly apparent in a numerical example presented in this paper where the berth allocations are suboptimal when the channel is not considered. In this paper, we present an approach to optimize the scheduling of channel movements and, furthermore, to integrate the channel scheduling and berth allocation/sequencing problems. A mixed integer program formulation is presented for this problem, based on a no-wait bidirectional flow shop with parallel machines. Benchmark problems consistent with the literature for berth allocation/sequencing have been modified to incorporate a range of channel configurations and used as test cases for the proposed model.

Suggested Citation

  • Paul Corry & Christian Bierwirth, 2019. "The Berth Allocation Problem with Channel Restrictions," Transportation Science, INFORMS, vol. 53(3), pages 708-727, May.
  • Handle: RePEc:inm:ortrsc:v:53:y:2019:i:3:p:708-727
    DOI: 10.1287/trsc.2018.0865
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2018.0865
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2018.0865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Burdett, R.L. & Kozan, E., 2010. "A disjunctive graph model and framework for constructing new train schedules," European Journal of Operational Research, Elsevier, vol. 200(1), pages 85-98, January.
    2. Jean-François Cordeau & Gilbert Laporte & Pasquale Legato & Luigi Moccia, 2005. "Models and Tabu Search Heuristics for the Berth-Allocation Problem," Transportation Science, INFORMS, vol. 39(4), pages 526-538, November.
    3. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    4. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    5. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
    6. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    7. Buhrkal, Katja & Zuglian, Sara & Ropke, Stefan & Larsen, Jesper & Lusby, Richard, 2011. "Models for the discrete berth allocation problem: A computational comparison," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(4), pages 461-473, July.
    8. Giallombardo, Giovanni & Moccia, Luigi & Salani, Matteo & Vacca, Ilaria, 2010. "Modeling and solving the Tactical Berth Allocation Problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 232-245, February.
    9. M. Flavia Monaco & Marcello Sammarra, 2007. "The Berth Allocation Problem: A Strong Formulation Solved by a Lagrangean Approach," Transportation Science, INFORMS, vol. 41(2), pages 265-280, May.
    10. Higgins, A. & Kozan, E. & Ferreira, L., 1996. "Optimal scheduling of trains on a single line track," Transportation Research Part B: Methodological, Elsevier, vol. 30(2), pages 147-161, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Zhendi & Ji, Mingjun & Kong, Lingrui & Hou, Xinhao, 2024. "Scheduling of automated ore terminal operations based on fixed inflow rhythm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    2. Guo, Liming & Zheng, Jianfeng & Du, Haoming & Du, Jian & Zhu, Zhihong, 2022. "The berth assignment and allocation problem considering cooperative liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    3. Guo, Zijian & Cao, Zhen & Wang, Wenyuan & Jiang, Ying & Xu, Xinglu & Feng, Peng, 2021. "An integrated model for vessel traffic and deballasting scheduling in coal export terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Zhao, Ke & Jin, Jian Gang & Zhang, Di & Ji, Sheng & Lee, Der-Horng, 2023. "A variable neighborhood search heuristic for real-time barge scheduling in a river-to-sea channel with tidal restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    5. Fatemi, Maedeh S. & Ghodratnama, Ali & Tavakkoli-Moghaddam, Reza & Kaboli, Amin, 2022. "A multi-functional tri-objective mathematical model for the pharmaceutical supply chain considering congestion of drugs in factories," Research in Transportation Economics, Elsevier, vol. 92(C).
    6. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2023. "A branch-and-price heuristic algorithm for the bunkering operation problem of a liquefied natural gas bunkering station in the inland waterways," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 145-170.
    7. Wu, Lingxiao & Yang, Dong & Wang, Shuaian & Yuan, Yun, 2020. "Evacuating offshore working barges from a land reclamation site in storm emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    8. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    9. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    10. Wu, Lingxiao & Jia, Shuai & Wang, Shuaian, 2020. "Pilotage planning in seaports," European Journal of Operational Research, Elsevier, vol. 287(1), pages 90-105.
    11. Hamza Bouzekri & Gülgün Alpan & Vincent Giard, 2022. "Integrated Laycan and Berth Allocation Problem with ship stability and conveyor routing constraints in bulk ports," Working Papers hal-03431793, HAL.
    12. Petris, Matteo & Pellegrini, Paola & Pesenti, Raffaele, 2022. "Models and algorithms for an integrated vessel scheduling and tug assignment problem within a canal harbor," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1120-1135.
    13. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong & Sheng, Dian, 2021. "Short-term berth planning and ship scheduling for a busy seaport with channel restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    14. Chen, Sumin & Zeng, Qingcheng & Li, Yantong, 2023. "Integrated operations planning in highly electrified container terminals considering time-of-use tariffs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    15. Roy, Debjit & van Ommeren, Jan-Kees & de Koster, René & Gharehgozli, Amir, 2022. "Modeling landside container terminal queues: Exact analysis and approximations," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 73-102.
    16. Abou Kasm, Omar & Diabat, Ali & Bierlaire, Michel, 2021. "Vessel scheduling with pilotage and tugging considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    17. Chargui, Kaoutar & Zouadi, Tarik & El Fallahi, Abdellah & Reghioui, Mohamed & Aouam, Tarik, 2021. "Berth and quay crane allocation and scheduling with worker performance variability and yard truck deployment in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    18. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    2. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    3. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    4. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong & Sheng, Dian, 2021. "Short-term berth planning and ship scheduling for a busy seaport with channel restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    5. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    6. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    7. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    8. Wawrzyniak, Jakub & Drozdowski, Maciej & Sanlaville, Éric, 2020. "Selecting algorithms for large berth allocation problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 844-862.
    9. Fernández, Elena & Munoz-Marquez, Manuel, 2022. "New formulations and solutions for the strategic berth template problem," European Journal of Operational Research, Elsevier, vol. 298(1), pages 99-117.
    10. Xavier Schepler & Nabil Absi & Dominique Feillet & Eric Sanlaville, 2019. "The stochastic discrete berth allocation problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 363-396, December.
    11. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.
    12. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    13. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    14. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.
    15. Eduardo Lalla-Ruiz & Stefan Voß & Christopher Expósito-Izquierdo & Belén Melián-Batista & J. Marcos Moreno-Vega, 2017. "A POPMUSIC-based approach for the berth allocation problem under time-dependent limitations," Annals of Operations Research, Springer, vol. 253(2), pages 871-897, June.
    16. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    17. Shih-Wei Lin & Ching-Jung Ting & Kun-Chih Wu, 2018. "Simulated annealing with different vessel assignment strategies for the continuous berth allocation problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 740-763, December.
    18. Kramer, Arthur & Lalla-Ruiz, Eduardo & Iori, Manuel & Voß, Stefan, 2019. "Novel formulations and modeling enhancements for the dynamic berth allocation problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 170-185.
    19. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    20. Changchun Liu & Xi Xiang & Li Zheng, 2020. "A two-stage robust optimization approach for the berth allocation problem under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 425-452, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:53:y:2019:i:3:p:708-727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.