IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v51y2017i3p882-892.html
   My bibliography  Save this article

Travel-Time Models With and Without Homogeneity Over Time

Author

Listed:
  • Malachy Carey

    (Ulster University Business School, Ulster University, Belfast BT37 0QB, United Kingdom; Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, United Kingdom)

  • Paul Humphreys

    (Ulster University Business School, Ulster University, Belfast BT37 0QB, United Kingdom)

  • Marie McHugh

    (Ulster University Business School, Ulster University, Belfast BT37 0QB, United Kingdom)

  • Ronan McIvor

    (Ulster University Business School, Ulster University, Belfast BT37 0QB, United Kingdom)

Abstract

In dynamic network loading and dynamic traffic assignment for networks, the link travel time is often taken as a function of the number of vehicles x ( t ) on the link at time t of entry to the link, that is, τ ( t ) = f ( x ( t )), which implies that the performance of the link is invariant (homogeneous) over time. Here we let this relationship vary over time, letting the travel time depend directly on the time of day, thus τ ( t ) = f ( x ( t ), t ). Various authors have investigated the properties of the previous (homogeneous) model, including conditions sufficient to ensure that it satisfies first-in-first-out (FIFO). Here we extend these results to the inhomogeneous model, and find that the new sufficient conditions have a natural interpretation. We find that the results derived by several previous authors continue to hold if we introduce one additional condition, namely that the rate of change of f ( x ( t ), t ) with respect to the second parameter has a certain (negative) lower bound. As a prelude, we discuss the equivalence of equations for flow propagation equations and for intertemporal conservation of flows, and argue that neither these equations nor the travel-time model are physically meaningful if FIFO is not satisfied. In §7 we provide some examples of time-dependent travel times and some numerical illustrations of when these will or will not adhere to FIFO.

Suggested Citation

  • Malachy Carey & Paul Humphreys & Marie McHugh & Ronan McIvor, 2017. "Travel-Time Models With and Without Homogeneity Over Time," Transportation Science, INFORMS, vol. 51(3), pages 882-892, August.
  • Handle: RePEc:inm:ortrsc:v:51:y:2017:i:3:p:882-892
    DOI: 10.287/trsc.2016.0674
    as

    Download full text from publisher

    File URL: https://doi.org/10.287/trsc.2016.0674
    Download Restriction: no

    File URL: https://libkey.io/10.287/trsc.2016.0674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carey, Malachy & McCartney, Mark, 2002. "Behaviour of a whole-link travel time model used in dynamic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 83-95, January.
    2. Long, Jiancheng & Gao, Ziyou & Szeto, W.Y., 2011. "Discretised link travel time models based on cumulative flows: Formulations and properties," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 232-254, January.
    3. Jin-Su Mun, 2009. "Some features of non-linear travel time models for dynamic traffic assignment," Transportation Planning and Technology, Taylor & Francis Journals, vol. 32(3), pages 261-288, April.
    4. Rubio-Ardanaz, J. M. & Wu, J. H. & Florian, M., 2003. "Two improved numerical algorithms for the continuous dynamic network loading problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 171-190, February.
    5. Terry L. Friesz & David Bernstein & Tony E. Smith & Roger L. Tobin & B. W. Wie, 1993. "A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem," Operations Research, INFORMS, vol. 41(1), pages 179-191, February.
    6. Daoli Zhu & Patrice Marcotte, 2000. "On the Existence of Solutions to the Dynamic User Equilibrium Problem," Transportation Science, INFORMS, vol. 34(4), pages 402-414, November.
    7. Y. W. Xu & J. H. Wu & M. Florian & P. Marcotte & D. L. Zhu, 1999. "Advances in the Continuous Dynamic Network Loading Problem," Transportation Science, INFORMS, vol. 33(4), pages 341-353, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carey, Malachy & Humphreys, Paul & McHugh, Marie & McIvor, Ronan, 2014. "Extending travel-time based models for dynamic network loading and assignment, to achieve adherence to first-in-first-out and link capacities," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 90-104.
    2. Jang, Wonjae & Ran, Bin & Choi, Keechoo, 2005. "A discrete time dynamic flow model and a formulation and solution method for dynamic route choice," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 593-620, August.
    3. Malachy Carey & Y. E. Ge, 2005. "Alternative Conditions for a Well-Behaved Travel Time Model," Transportation Science, INFORMS, vol. 39(3), pages 417-428, August.
    4. Malachy Carey & Y. E. Ge & Mark McCartney, 2003. "A Whole-Link Travel-Time Model with Desirable Properties," Transportation Science, INFORMS, vol. 37(1), pages 83-96, February.
    5. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Modeling and solving continuous-time instantaneous dynamic user equilibria: A differential complementarity systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 389-408.
    6. Nie, Xiaojian & Zhang, H.M., 2005. "Delay-function-based link models: their properties and computational issues," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 729-751, September.
    7. Carey, Malachy & Bar-Gera, Hillel & Watling, David & Balijepalli, Chandra, 2014. "Implementing first-in–first-out in the cell transmission model for networks," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 105-118.
    8. Carey, Malachy & Ge, Y. E., 2003. "Comparing whole-link travel time models," Transportation Research Part B: Methodological, Elsevier, vol. 37(10), pages 905-926, December.
    9. Zhong, R.X. & Sumalee, A. & Friesz, T.L. & Lam, William H.K., 2011. "Dynamic user equilibrium with side constraints for a traffic network: Theoretical development and numerical solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1035-1061, August.
    10. Malachy Carey & Y. E. Ge, 2005. "Convergence of a Discretised Travel-Time Model," Transportation Science, INFORMS, vol. 39(1), pages 25-38, February.
    11. Huang, Y.P. & Xiong, J.H. & Sumalee, A. & Zheng, N. & Lam, W.H.K. & He, Z.B. & Zhong, R.X., 2020. "A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 1-25.
    12. Malachy Carey & Y. Ge, 2012. "Comparison of Methods for Path Flow Reassignment for Dynamic User Equilibrium," Networks and Spatial Economics, Springer, vol. 12(3), pages 337-376, September.
    13. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    14. Rui Ma & Xuegang (Jeff) Ban & Jong-Shi Pang, 2018. "A Link-Based Differential Complementarity System Formulation for Continuous-Time Dynamic User Equilibria with Queue Spillbacks," Transportation Science, INFORMS, vol. 52(3), pages 564-592, June.
    15. Friesz, Terry L. & Han, Ke & Neto, Pedro A. & Meimand, Amir & Yao, Tao, 2013. "Dynamic user equilibrium based on a hydrodynamic model," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 102-126.
    16. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    17. Garcia-Rodenas, Ricardo & Lopez-Garcia, Maria Luz & Nino-Arbelaez, Alejandro & Verastegui-Rayo, Doroteo, 2006. "A continuous whole-link travel time model with occupancy constraint," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1455-1471, December.
    18. Carey, Malachy & McCartney, Mark, 2003. "Pseudo-periodicity in a travel-time model used in dynamic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 769-792, November.
    19. M Carey, 2009. "A framework for user equilibrium dynamic traffic assignment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 395-410, March.
    20. Roberto Cominetti & José Correa & Omar Larré, 2015. "Dynamic Equilibria in Fluid Queueing Networks," Operations Research, INFORMS, vol. 63(1), pages 21-34, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:51:y:2017:i:3:p:882-892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.