IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v12y2012i3p337-376.html
   My bibliography  Save this article

Comparison of Methods for Path Flow Reassignment for Dynamic User Equilibrium

Author

Listed:
  • Malachy Carey
  • Y. Ge

Abstract

Models to describe or predict of time-varying traffic flows and travel times on road networks are usually referred to as dynamic traffic assignment (DTA) models or dynamic user equilibrium (DUE) models. The most common form of algorithms for DUE consists of iterating between two components namely dynamic network loading (DNL) and path inflow reassignment or route choice. The DNL components in these algorithms have been investigated in many papers but in comparison the path inflow reassignment component has been relatively neglected. In view of that, we investigate various methods for path inflow reassignment that have been used in the literature. We compare them numerically by embedding them in a DUE algorithm and applying the algorithm to solve DUE problems for various simple network scenarios. We find that the choice of inflow reassignment method makes a huge difference to the speed of convergence of the algorithms and, in particular, find that ‘travel time responsive’ reassignment methods converge much faster than the other methods. We also investigate how speed of convergence is affected by the extent of congestion on the network, by higher demand or lower capacity. There appears to be much scope for further improving path inflow reassignment methods. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Malachy Carey & Y. Ge, 2012. "Comparison of Methods for Path Flow Reassignment for Dynamic User Equilibrium," Networks and Spatial Economics, Springer, vol. 12(3), pages 337-376, September.
  • Handle: RePEc:kap:netspa:v:12:y:2012:i:3:p:337-376
    DOI: 10.1007/s11067-011-9159-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11067-011-9159-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-011-9159-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren B. Powell & Yosef Sheffi, 1982. "The Convergence of Equilibrium Algorithms with Predetermined Step Sizes," Transportation Science, INFORMS, vol. 16(1), pages 45-55, February.
    2. Huang, Hai-Jun & Lam, William H. K., 2002. "Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 253-273, March.
    3. Friesz, Terry L. & Mookherjee, Reetabrata, 2006. "Solving the dynamic network user equilibrium problem with state-dependent time shifts," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 207-229, March.
    4. Lo, Hong K. & Szeto, W. Y., 2002. "A cell-based variational inequality formulation of the dynamic user optimal assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 421-443, June.
    5. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    6. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    7. Wu, J. H. & Chen, Y. & Florian, M., 1998. "The continuous dynamic network loading problem: a mathematical formulation and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 173-187, April.
    8. Rubio-Ardanaz, J. M. & Wu, J. H. & Florian, M., 2003. "Two improved numerical algorithms for the continuous dynamic network loading problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 171-190, February.
    9. D.R. Han & H.K. Lo, 2002. "New Alternating Direction Method for a Class of Nonlinear Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 112(3), pages 549-560, March.
    10. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    11. Terry L. Friesz & David Bernstein & Tony E. Smith & Roger L. Tobin & B. W. Wie, 1993. "A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem," Operations Research, INFORMS, vol. 41(1), pages 179-191, February.
    12. Daoli Zhu & Patrice Marcotte, 2000. "On the Existence of Solutions to the Dynamic User Equilibrium Problem," Transportation Science, INFORMS, vol. 34(4), pages 402-414, November.
    13. Zhang, Ding & Nagurney, Anna & Wu, Jiahao, 2001. "On the equivalence between stationary link flow patterns and traffic network equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 731-748, September.
    14. Szeto, W. Y. & Lo, Hong K., 2004. "A cell-based simultaneous route and departure time choice model with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 593-612, August.
    15. Y. W. Xu & J. H. Wu & M. Florian & P. Marcotte & D. L. Zhu, 1999. "Advances in the Continuous Dynamic Network Loading Problem," Transportation Science, INFORMS, vol. 33(4), pages 341-353, November.
    16. Daganzo, Carlos F., 1995. "A finite difference approximation of the kinematic wave model of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 261-276, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoang, Nam H. & Vu, Hai L. & Lo, Hong K., 2018. "An informed user equilibrium dynamic traffic assignment problem in a multiple origin-destination stochastic network," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 207-230.
    2. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    3. Rui Ma & Xuegang Ban & Jong-Shi Pang & Henry Liu, 2015. "Submission to the DTA2012 Special Issue: Approximating Time Delays in Solving Continuous-Time Dynamic User Equilibria," Networks and Spatial Economics, Springer, vol. 15(3), pages 443-463, September.
    4. Watling, David Paul & Rasmussen, Thomas Kjær & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part I – Model formulations under alternative distributions and restrictions," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 166-181.
    5. ManWo Ng & Hong Lo, 2013. "Regional Air Quality Conformity in Transportation Networks with Stochastic Dependencies: A Theoretical Copula-Based Model," Networks and Spatial Economics, Springer, vol. 13(4), pages 373-397, December.
    6. Xin He & Nan-jing Huang & Xue-song Li, 2022. "Modified Projection Methods for Solving Multi-valued Variational Inequality without Monotonicity," Networks and Spatial Economics, Springer, vol. 22(2), pages 361-377, June.
    7. Hoang, Nam H. & Vu, Hai L. & Panda, Manoj & Lo, Hong K., 2019. "A linear framework for dynamic user equilibrium traffic assignment in a single origin-destination capacitated network," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 329-352.
    8. Rui Ma & Xuegang Ban & Jong-Shi Pang & Henry Liu, 2015. "Submission to the DTA2012 Special Issue: Convergence of Time Discretization Schemes for Continuous-Time Dynamic Network Loading Models," Networks and Spatial Economics, Springer, vol. 15(3), pages 419-441, September.
    9. Rasmussen, Thomas Kjær & Watling, David Paul & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part II – Solving the restricted SUE for the logit family," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 146-165.
    10. Ke Han & Terry L. Friesz, 2017. "Continuity of the Effective Delay Operator for Networks Based on the Link Delay Model," Networks and Spatial Economics, Springer, vol. 17(4), pages 1095-1110, December.
    11. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Timmermans, Harry, 2019. "Tolerance-based strategies for extending the column generation algorithm to the bounded rational dynamic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 102-121.
    12. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    13. Wang, Dong & Liao, Feixiong, 2023. "Incentivized user-based relocation strategies for moderating supply–demand dynamics in one-way car-sharing services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    14. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    15. Carey, Malachy, 2021. "The cell transmission model with free-flow speeds varying over time or space," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 245-257.
    16. Caixia Li & Sreenatha Gopalarao Anavatti & Tapabrata Ray, 2017. "A Path-Based Solution Algorithm for Dynamic Traffic Assignment," Networks and Spatial Economics, Springer, vol. 17(3), pages 841-860, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friesz, Terry L. & Kim, Taeil & Kwon, Changhyun & Rigdon, Matthew A., 2011. "Approximate network loading and dual-time-scale dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 176-207, January.
    2. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    3. M Carey, 2009. "A framework for user equilibrium dynamic traffic assignment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 395-410, March.
    4. Carey, Malachy & Humphreys, Paul & McHugh, Marie & McIvor, Ronan, 2014. "Extending travel-time based models for dynamic network loading and assignment, to achieve adherence to first-in-first-out and link capacities," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 90-104.
    5. Han, Ke & Friesz, Terry L. & Szeto, W.Y. & Liu, Hongcheng, 2015. "Elastic demand dynamic network user equilibrium: Formulation, existence and computation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 183-209.
    6. Jang, Wonjae & Ran, Bin & Choi, Keechoo, 2005. "A discrete time dynamic flow model and a formulation and solution method for dynamic route choice," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 593-620, August.
    7. Rui Ma & Xuegang (Jeff) Ban & Jong-Shi Pang, 2018. "A Link-Based Differential Complementarity System Formulation for Continuous-Time Dynamic User Equilibria with Queue Spillbacks," Transportation Science, INFORMS, vol. 52(3), pages 564-592, June.
    8. Friesz, Terry L. & Han, Ke & Neto, Pedro A. & Meimand, Amir & Yao, Tao, 2013. "Dynamic user equilibrium based on a hydrodynamic model," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 102-126.
    9. Carey, Malachy & Bar-Gera, Hillel & Watling, David & Balijepalli, Chandra, 2014. "Implementing first-in–first-out in the cell transmission model for networks," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 105-118.
    10. Carey, Malachy & Ge, Y. E., 2003. "Comparing whole-link travel time models," Transportation Research Part B: Methodological, Elsevier, vol. 37(10), pages 905-926, December.
    11. Long, Jiancheng & Gao, Ziyou & Szeto, W.Y., 2011. "Discretised link travel time models based on cumulative flows: Formulations and properties," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 232-254, January.
    12. Duong Viet Thong & Aviv Gibali & Mathias Staudigl & Phan Tu Vuong, 2021. "Computing Dynamic User Equilibrium on Large-Scale Networks Without Knowing Global Parameters," Networks and Spatial Economics, Springer, vol. 21(3), pages 735-768, September.
    13. Zhi-Yang Lin & S. C. Wong & Peng Zhang & Keechoo Choi, 2018. "A Predictive Continuum Dynamic User-Optimal Model for the Simultaneous Departure Time and Route Choice Problem in a Polycentric City," Service Science, INFORMS, vol. 52(6), pages 1496-1508, December.
    14. Garcia-Rodenas, Ricardo & Lopez-Garcia, Maria Luz & Nino-Arbelaez, Alejandro & Verastegui-Rayo, Doroteo, 2006. "A continuous whole-link travel time model with occupancy constraint," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1455-1471, December.
    15. Carey, Malachy & Watling, David, 2012. "Dynamic traffic assignment approximating the kinematic wave model: System optimum, marginal costs, externalities and tolls," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 634-648.
    16. František Kolovský & Ivana Kolingerová, 2022. "The Piecewise Constant/Linear Solution for Dynamic User Equilibrium," Networks and Spatial Economics, Springer, vol. 22(4), pages 737-765, December.
    17. Zhong, R.X. & Sumalee, A. & Friesz, T.L. & Lam, William H.K., 2011. "Dynamic user equilibrium with side constraints for a traffic network: Theoretical development and numerical solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1035-1061, August.
    18. Song, Wenjing & Han, Ke & Wang, Yiou & Friesz, Terry L. & del Castillo, Enrique, 2018. "Statistical metamodeling of dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 740-756.
    19. Yu Nie & H. Zhang, 2010. "Solving the Dynamic User Optimal Assignment Problem Considering Queue Spillback," Networks and Spatial Economics, Springer, vol. 10(1), pages 49-71, March.
    20. Malachy Carey & Y. E. Ge, 2005. "Convergence of a Discretised Travel-Time Model," Transportation Science, INFORMS, vol. 39(1), pages 25-38, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:12:y:2012:i:3:p:337-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.