IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v36y2002i1p83-95.html
   My bibliography  Save this article

Behaviour of a whole-link travel time model used in dynamic traffic assignment

Author

Listed:
  • Carey, Malachy
  • McCartney, Mark

Abstract

Whole-link models of traffic flows have been widely used in mathematical programming models for dynamic traffic assignment (DTA). In this paper, we consider a well-known whole-link model in which the link travel time, for traffic entering at time t, is a function of the number of vehicles on the link, and may also be a function of the inflow rate or outflow rate at time t. Instead of considering this in a network context, we examine its behaviour for a single link, for given inflow profiles, so as to distinguish behaviour within a link from network behaviour. We consider steady state solutions, for constant inflows and outflows, note that various model forms can yield the same solution, and that under certain conditions the model may admit multiple values for the link travel time. We derive the complete analytic solution for a model where the travel time depends linearly only on the number of vehicles on the link, and show that the solution exhibits pseudo-periodicity, and converges to a steady state solution. The results indicate that the analytic solution is quite complex even for very simple cases, and that care has to be exercised in the choice of parameters. We illustrate the solutions numerically.

Suggested Citation

  • Carey, Malachy & McCartney, Mark, 2002. "Behaviour of a whole-link travel time model used in dynamic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 83-95, January.
  • Handle: RePEc:eee:transb:v:36:y:2002:i:1:p:83-95
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(00)00039-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. MERCHANT, Deepak K. & NEMHAUSER, George L., 1978. "Optimality conditions for a dynamic traffic assignment model," LIDAM Reprints CORE 345, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Ran, Bin & Rouphail, Nagui M. & Tarko, Andrzej & Boyce, David E., 1997. "Toward a class of link travel time functions for dynamic assignment models on signalized networks," Transportation Research Part B: Methodological, Elsevier, vol. 31(4), pages 277-290, August.
    3. Daganzo, Carlos F., 1995. "Properties of link travel time functions under dynamic loads," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 95-98, April.
    4. Bin Ran & David E. Boyce & Larry J. LeBlanc, 1993. "A New Class of Instantaneous Dynamic User-Optimal Traffic Assignment Models," Operations Research, INFORMS, vol. 41(1), pages 192-202, February.
    5. Wu, J. H. & Chen, Y. & Florian, M., 1998. "The continuous dynamic network loading problem: a mathematical formulation and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 173-187, April.
    6. David E. Boyce & Bin Ran & Larry J. Leblanc, 1995. "Solving an Instantaneous Dynamic User-Optimal Route Choice Model," Transportation Science, INFORMS, vol. 29(2), pages 128-142, May.
    7. Terry L. Friesz & David Bernstein & Tony E. Smith & Roger L. Tobin & B. W. Wie, 1993. "A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem," Operations Research, INFORMS, vol. 41(1), pages 179-191, February.
    8. Deepak K. Merchant & George L. Nemhauser, 1978. "Optimality Conditions for a Dynamic Traffic Assignment Model," Transportation Science, INFORMS, vol. 12(3), pages 200-207, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jang, Wonjae & Ran, Bin & Choi, Keechoo, 2005. "A discrete time dynamic flow model and a formulation and solution method for dynamic route choice," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 593-620, August.
    2. Rui Ma & Xuegang Ban & Jong-Shi Pang & Henry Liu, 2015. "Submission to the DTA2012 Special Issue: Convergence of Time Discretization Schemes for Continuous-Time Dynamic Network Loading Models," Networks and Spatial Economics, Springer, vol. 15(3), pages 419-441, September.
    3. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    4. Garcia-Rodenas, Ricardo & Lopez-Garcia, Maria Luz & Nino-Arbelaez, Alejandro & Verastegui-Rayo, Doroteo, 2006. "A continuous whole-link travel time model with occupancy constraint," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1455-1471, December.
    5. Carey, Malachy & McCartney, Mark, 2003. "Pseudo-periodicity in a travel-time model used in dynamic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 769-792, November.
    6. Malachy Carey & Y. E. Ge & Mark McCartney, 2003. "A Whole-Link Travel-Time Model with Desirable Properties," Transportation Science, INFORMS, vol. 37(1), pages 83-96, February.
    7. Yanying Li, 2008. "Short-term prediction of motorway travel time using ANPR and loop data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 507-517.
    8. Carey, Malachy & Humphreys, Paul & McHugh, Marie & McIvor, Ronan, 2014. "Extending travel-time based models for dynamic network loading and assignment, to achieve adherence to first-in-first-out and link capacities," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 90-104.
    9. Shengneng Hu & Zhen Jia & Anping Yang & Kui Xue & Guoqi He, 2022. "Evaluating the Sustainable Traffic Flow Operational Features of U-turn Design with Advance Left Turn," Sustainability, MDPI, vol. 14(11), pages 1-16, June.
    10. Malachy Carey & Paul Humphreys & Marie McHugh & Ronan McIvor, 2017. "Travel-Time Models With and Without Homogeneity Over Time," Transportation Science, INFORMS, vol. 51(3), pages 882-892, August.
    11. Malachy Carey & Y. E. Ge, 2005. "Convergence of a Discretised Travel-Time Model," Transportation Science, INFORMS, vol. 39(1), pages 25-38, February.
    12. Paipuri, Mahendra & Leclercq, Ludovic, 2020. "Bi-modal macroscopic traffic dynamics in a single region," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 257-290.
    13. Nie, Xiaojian & Zhang, H.M., 2005. "Delay-function-based link models: their properties and computational issues," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 729-751, September.
    14. Malachy Carey & Y. E. Ge, 2005. "Alternative Conditions for a Well-Behaved Travel Time Model," Transportation Science, INFORMS, vol. 39(3), pages 417-428, August.
    15. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Modeling and solving continuous-time instantaneous dynamic user equilibria: A differential complementarity systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 389-408.
    16. Huang, Y.P. & Xiong, J.H. & Sumalee, A. & Zheng, N. & Lam, W.H.K. & He, Z.B. & Zhong, R.X., 2020. "A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 1-25.
    17. Carey, Malachy & Ge, Y. E., 2003. "Comparing whole-link travel time models," Transportation Research Part B: Methodological, Elsevier, vol. 37(10), pages 905-926, December.
    18. Zhong, R.X. & Sumalee, A. & Friesz, T.L. & Lam, William H.K., 2011. "Dynamic user equilibrium with side constraints for a traffic network: Theoretical development and numerical solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1035-1061, August.
    19. Ban, Xuegang (Jeff) & Liu, Henry X. & Ferris, Michael C. & Ran, Bin, 2008. "A link-node complementarity model and solution algorithm for dynamic user equilibria with exact flow propagations," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 823-842, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    2. Friesz, Terry L. & Han, Ke & Neto, Pedro A. & Meimand, Amir & Yao, Tao, 2013. "Dynamic user equilibrium based on a hydrodynamic model," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 102-126.
    3. Friesz, Terry L. & Kim, Taeil & Kwon, Changhyun & Rigdon, Matthew A., 2011. "Approximate network loading and dual-time-scale dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 176-207, January.
    4. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Modeling and solving continuous-time instantaneous dynamic user equilibria: A differential complementarity systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 389-408.
    5. Sheu, Jiuh-Biing, 2006. "A composite traffic flow modeling approach for incident-responsive network traffic assignment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 461-478.
    6. Nie, Xiaojian & Zhang, H.M., 2005. "Delay-function-based link models: their properties and computational issues," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 729-751, September.
    7. Wu, J. H. & Chen, Y. & Florian, M., 1998. "The continuous dynamic network loading problem: a mathematical formulation and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 173-187, April.
    8. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    9. Chow, Andy H.F., 2009. "Properties of system optimal traffic assignment with departure time choice and its solution method," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 325-344, March.
    10. Li, Jun & Fujiwara, Okitsugu & Kawakami, Shogo, 2000. "A reactive dynamic user equilibrium model in network with queues," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 605-624, November.
    11. Long, Jiancheng & Wang, Chao & Szeto, W.Y., 2018. "Dynamic system optimum simultaneous route and departure time choice problems: Intersection-movement-based formulations and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 166-206.
    12. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    13. Jin, Wen-Long, 2015. "On the existence of stationary states in general road networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 917-929.
    14. Ran, Bin & Boyce, David E., 1995. "Ideal Dynamic User-Optimal Route Choice: A Link-Based Variational Inequality Formulation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3t4686x6, Institute of Transportation Studies, UC Berkeley.
    15. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "A partial differential equation formulation of Vickrey’s bottleneck model, part II: Numerical analysis and computation," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 75-93.
    16. Zhu, Feng & Ukkusuri, Satish V., 2017. "Efficient and fair system states in dynamic transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 272-289.
    17. Jiancheng Long & Hai-Jun Huang & Ziyou Gao & W. Y. Szeto, 2013. "An Intersection-Movement-Based Dynamic User Optimal Route Choice Problem," Operations Research, INFORMS, vol. 61(5), pages 1134-1147, October.
    18. Lam, William H. K. & Huang, Hai-Jun, 1995. "Dynamic user optimal traffic assignment model for many to one travel demand," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 243-259, August.
    19. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.
    20. Lam, William H. K. & Yin, Yafeng, 2001. "An activity-based time-dependent traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 549-574, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:36:y:2002:i:1:p:83-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.