IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v63y2015i1p21-34.html
   My bibliography  Save this article

Dynamic Equilibria in Fluid Queueing Networks

Author

Listed:
  • Roberto Cominetti

    (Departamento de Ingeniería Industrial, Universidad de Chile, Santiago, Chile)

  • José Correa

    (Departamento de Ingeniería Industrial, Universidad de Chile, Santiago, Chile)

  • Omar Larré

    (Departamento de Ingeniería Industrial, Universidad de Chile, Santiago, Chile)

Abstract

Flows over time provide a natural and convenient description for the dynamics of a continuous stream of particles traveling from a source to a sink in a network, allowing to track the progress of each infinitesimal particle along time. A basic model for the propagation of flow is the so-called fluid queue model in which the time to traverse an edge is composed of a flow-dependent waiting time in a queue at the entrance of the edge plus a constant travel time after leaving the queue. In a dynamic network routing game each infinitesimal particle is interpreted as a player that seeks to complete its journey in the least possible time. Players are forward looking and anticipate the congestion and queuing delays induced by others upon arrival to any edge in the network. Equilibrium occurs when each particle travels along a shortest path.This paper is concerned with the study of equilibria in the fluid queue model and provides a constructive proof of existence and uniqueness of equilibria in single origin-destination networks with piecewise constant inflow rate. This is done through a detailed analysis of the underlying static flows obtained as derivatives of a dynamic equilibrium. Furthermore, for multicommodity networks, we give a general nonconstructive proof of existence of equilibria when the inflow rates belong to L p .

Suggested Citation

  • Roberto Cominetti & José Correa & Omar Larré, 2015. "Dynamic Equilibria in Fluid Queueing Networks," Operations Research, INFORMS, vol. 63(1), pages 21-34, February.
  • Handle: RePEc:inm:oropre:v:63:y:2015:i:1:p:21-34
    DOI: 10.1287/opre.2015.1348
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1348
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frédéric Meunier & Nicolas Wagner, 2010. "Equilibrium Results for Dynamic Congestion Games," Transportation Science, INFORMS, vol. 44(4), pages 524-536, November.
    2. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    3. L. R. Ford & D. R. Fulkerson, 1958. "Constructing Maximal Dynamic Flows from Static Flows," Operations Research, INFORMS, vol. 6(3), pages 419-433, June.
    4. Bhaskar, Umang & Fleischer, Lisa & Anshelevich, Elliot, 2015. "A Stackelberg strategy for routing flow over time," Games and Economic Behavior, Elsevier, vol. 92(C), pages 232-247.
    5. Terry L. Friesz & David Bernstein & Tony E. Smith & Roger L. Tobin & B. W. Wie, 1993. "A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem," Operations Research, INFORMS, vol. 41(1), pages 179-191, February.
    6. Daoli Zhu & Patrice Marcotte, 2000. "On the Existence of Solutions to the Dynamic User Equilibrium Problem," Transportation Science, INFORMS, vol. 34(4), pages 402-414, November.
    7. Y. W. Xu & J. H. Wu & M. Florian & P. Marcotte & D. L. Zhu, 1999. "Advances in the Continuous Dynamic Network Loading Problem," Transportation Science, INFORMS, vol. 33(4), pages 341-353, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryo Kawasaki & Hideo Konishi & Junki Yukawa, 2023. "Equilibria in bottleneck games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 649-685, September.
    2. Frascaria, Dario & Olver, Neil & Verhoef, Erik, 2020. "Emergent hypercongestion in Vickrey bottleneck networks," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 523-538.
    3. Wen-Long Jin, 2021. "A Link Queue Model of Network Traffic Flow," Transportation Science, INFORMS, vol. 55(2), pages 436-455, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friesz, Terry L. & Han, Ke & Neto, Pedro A. & Meimand, Amir & Yao, Tao, 2013. "Dynamic user equilibrium based on a hydrodynamic model," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 102-126.
    2. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Modeling and solving continuous-time instantaneous dynamic user equilibria: A differential complementarity systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 389-408.
    3. Han, Ke & Szeto, W.Y. & Friesz, Terry L., 2015. "Formulation, existence, and computation of boundedly rational dynamic user equilibrium with fixed or endogenous user tolerance," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 16-49.
    4. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    5. Duong Viet Thong & Aviv Gibali & Mathias Staudigl & Phan Tu Vuong, 2021. "Computing Dynamic User Equilibrium on Large-Scale Networks Without Knowing Global Parameters," Networks and Spatial Economics, Springer, vol. 21(3), pages 735-768, September.
    6. Jang, Wonjae & Ran, Bin & Choi, Keechoo, 2005. "A discrete time dynamic flow model and a formulation and solution method for dynamic route choice," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 593-620, August.
    7. Malachy Carey & Y. E. Ge, 2005. "Alternative Conditions for a Well-Behaved Travel Time Model," Transportation Science, INFORMS, vol. 39(3), pages 417-428, August.
    8. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    9. Rui Ma & Xuegang (Jeff) Ban & Jong-Shi Pang, 2018. "A Link-Based Differential Complementarity System Formulation for Continuous-Time Dynamic User Equilibria with Queue Spillbacks," Transportation Science, INFORMS, vol. 52(3), pages 564-592, June.
    10. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    11. Malachy Carey & Y. E. Ge & Mark McCartney, 2003. "A Whole-Link Travel-Time Model with Desirable Properties," Transportation Science, INFORMS, vol. 37(1), pages 83-96, February.
    12. Han, Ke & Piccoli, Benedetto & Friesz, Terry L., 2016. "Continuity of the path delay operator for dynamic network loading with spillback," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 211-233.
    13. B. G. Heydecker & J. D. Addison, 2005. "Analysis of Dynamic Traffic Equilibrium with Departure Time Choice," Transportation Science, INFORMS, vol. 39(1), pages 39-57, February.
    14. Luo, Shiaw-Shyan & Wang, Chung-Yung & Sung, Yi-Wei, 2018. "Time-dependent trip-chain link travel time estimation model with the first-in–first-out constraint," European Journal of Operational Research, Elsevier, vol. 267(2), pages 415-427.
    15. Nie, Xiaojian & Zhang, H.M., 2005. "Delay-function-based link models: their properties and computational issues," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 729-751, September.
    16. Friesz, Terry L. & Han, Ke, 2019. "The mathematical foundations of dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 309-328.
    17. Han, Ke & Friesz, Terry L. & Szeto, W.Y. & Liu, Hongcheng, 2015. "Elastic demand dynamic network user equilibrium: Formulation, existence and computation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 183-209.
    18. Carey, Malachy & Bar-Gera, Hillel & Watling, David & Balijepalli, Chandra, 2014. "Implementing first-in–first-out in the cell transmission model for networks," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 105-118.
    19. Carey, Malachy & Ge, Y. E., 2003. "Comparing whole-link travel time models," Transportation Research Part B: Methodological, Elsevier, vol. 37(10), pages 905-926, December.
    20. Zhong, R.X. & Sumalee, A. & Friesz, T.L. & Lam, William H.K., 2011. "Dynamic user equilibrium with side constraints for a traffic network: Theoretical development and numerical solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1035-1061, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:63:y:2015:i:1:p:21-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.