A Hybrid Simulation Approach for Estimating the Market Share Evolution of Electric Vehicles
Author
Abstract
Suggested Citation
DOI: 10.1287/trsc.2014.0526
Download full text from publisher
References listed on IDEAS
- Achtnicht, Martin & Bühler, Georg & Hermeling, Claudia, 2008.
"Impact of Service Station Networks on Purchase Decisions of Alternative-fuel Vehicles,"
ZEW Discussion Papers
08-088, ZEW - Leibniz Centre for European Economic Research.
- Achtnicht, Martin & Bühler, Georg & Hermeling, Claudia, 2012. "Impact of service station networks on purchase decisions of alternative-fuel vehicles," ZEW Discussion Papers 08-088 [rev.], ZEW - Leibniz Centre for European Economic Research.
- Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
- Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
- BenDor, Todd & Ford, Andrew, 2006. "Simulating a combination of feebates and scrappage incentives to reduce automobile emissions," Energy, Elsevier, vol. 31(8), pages 1197-1214.
- Train,Kenneth E., 2009.
"Discrete Choice Methods with Simulation,"
Cambridge Books,
Cambridge University Press, number 9780521766555, September.
- Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, October.
- Kenneth Train, 2003. "Discrete Choice Methods with Simulation," Online economics textbooks, SUNY-Oswego, Department of Economics, number emetr2.
- Brownstone, David & Train, Kenneth, 1998.
"Forecasting new product penetration with flexible substitution patterns,"
Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
- Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," University of California Transportation Center, Working Papers qt3tb6j874, University of California Transportation Center.
- Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," Department of Economics, Working Paper Series qt1j6814b3, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," University of California Transportation Center, Working Papers qt1j6814b3, University of California Transportation Center.
- Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," Department of Economics, Working Paper Series qt3tb6j874, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
- Amini, Mehdi & Wakolbinger, Tina & Racer, Michael & Nejad, Mohammad G., 2012. "Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach," European Journal of Operational Research, Elsevier, vol. 216(2), pages 301-311.
- Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
- Brownstone, David & Bunch, David S. & Train, Kenneth, 2000.
"Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles,"
Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
- Brownstone, David & Bunch, David S & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," University of California Transportation Center, Working Papers qt45f996hh, University of California Transportation Center.
- Brownstone, David & Bunch, David S & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Department of Economics, Working Paper Series qt45f996hh, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Jeroen Struben & John D Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Environment and Planning B, , vol. 35(6), pages 1070-1097, December.
- Cowi A/S, 2002. "Fiscal Measures to Reduce CO2 Emissions from New Passenger Cars," Taxation Studies 0008, Directorate General Taxation and Customs Union, European Commission.
- M Günther & C Stummer & L M Wakolbinger & M Wildpaner, 2011. "An agent-based simulation approach for the new product diffusion of a novel biomass fuel," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 12-20, January.
- Mueller, Michel G. & de Haan, Peter, 2009. "How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars--Part I: Model structure, simulation of bounded rationality, and model validation," Energy Policy, Elsevier, vol. 37(3), pages 1072-1082, March.
- Nobuyuki Ito & Kenji Takeuchi & Shunsuke Managi, 2012. "Willingness to pay for the infrastructure investments for alternative fuel vehicles," Discussion Papers 1207, Graduate School of Economics, Kobe University.
- Jeroen Struben & John D. Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Post-Print hal-02312277, HAL.
- Hazhir Rahmandad & John Sterman, 2008. "Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models," Management Science, INFORMS, vol. 54(5), pages 998-1014, May.
- Shafiei, Ehsan & Thorkelsson, Hedinn & Ásgeirsson, Eyjólfur Ingi & Davidsdottir, Brynhildur & Raberto, Marco & Stefansson, Hlynur, 2012. "An agent-based modeling approach to predict the evolution of market share of electric vehicles: A case study from Iceland," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1638-1653.
- Glen L. Urban & John R. Hauser & John H. Roberts, 1990. "Prelaunch Forecasting of New Automobiles," Management Science, INFORMS, vol. 36(4), pages 401-421, April.
- Kenneth E. Train & Clifford Winston, 2007. "Vehicle Choice Behavior And The Declining Market Share Of U.S. Automakers," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1469-1496, November.
- Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
- de Haan, Peter & Mueller, Michel G. & Scholz, Roland W., 2009. "How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars--Part II: Forecasting effects of feebates based on energy-efficiency," Energy Policy, Elsevier, vol. 37(3), pages 1083-1094, March.
- Brownston, David & Bunch, David S. & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," University of California Transportation Center, Working Papers qt7rf7s3nx, University of California Transportation Center.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Antje-Mareike Dietrich & Christian Leßmann & Arne Steinkraus, 2016. "Kaufprämien für Elektroautos: Politik auf dem Irrweg?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(11), pages 21-26, June.
- Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
- Lieven, Theo, 2015. "Policy measures to promote electric mobility – A global perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 78-93.
- Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
- Lukas, Elmar & Spengler, Thomas Stefan & Kupfer, Stefan & Kieckhäfer, Karsten, 2017. "When and how much to invest? Investment and capacity choice under product life cycle uncertainty," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1105-1114.
- Gu, Huaying & Liu, Zhixue & Qing, Qiankai, 2017. "Optimal electric vehicle production strategy under subsidy and battery recycling," Energy Policy, Elsevier, vol. 109(C), pages 579-589.
- Zhu, Mengping & Liu, Zhixue & Li, Jianbin & Zhu, Stuart X., 2020. "Electric vehicle battery capacity allocation and recycling with downstream competition," European Journal of Operational Research, Elsevier, vol. 283(1), pages 365-379.
- Christian Weckenborg & Karsten Kieckhäfer & Thomas S. Spengler & Patricia Bernstein, 2020. "The Volkswagen Pre-Production Center Applies Operations Research to Optimize Capacity Scheduling," Interfaces, INFORMS, vol. 50(2), pages 119-136, March.
- Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2022. "A systematic review of the agent-based modelling/simulation paradigm in mobility transition," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
- Quarles, Neil & Kockelman, Kara M. & Lee, Jooyong, 2021. "America’s fleet evolution in an automated future," Research in Transportation Economics, Elsevier, vol. 90(C).
- Mohammadreza Zolfagharian & Bob Walrave & A. Georges L. Romme & Rob Raven, 2020. "Toward the Dynamic Modeling of Transition Problems: The Case of Electric Mobility," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
- Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
- Esteban Lopez-Arboleda & Alfonso T. Sarmiento & Laura M. Cardenas, 2021. "Systemic approach for integration of sustainability in evaluation of public policies for adoption of electric vehicles," Systemic Practice and Action Research, Springer, vol. 34(4), pages 399-417, August.
- Mark M. Nejad & Lena Mashayekhy & Daniel Grosu & Ratna Babu Chinnam, 2017. "Optimal Routing for Plug-In Hybrid Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1304-1325, November.
- Huth, Christian & Kieckhäfer, Karsten & Spengler, Thomas Stefan, 2015. "Make-or-buy strategies for electric vehicle batteries—a simulation-based analysis," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 22-34.
- Gómez Vilchez, Jonatan J. & Jochem, Patrick, 2019. "Simulating vehicle fleet composition: A review of system dynamics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gómez Vilchez, Jonatan J. & Jochem, Patrick, 2019. "Simulating vehicle fleet composition: A review of system dynamics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
- Tran, Martino, 2012. "Technology-behavioural modelling of energy innovation diffusion in the UK," Applied Energy, Elsevier, vol. 95(C), pages 1-11.
- Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
- Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
- Hackbarth, André & Madlener, Reinhard, 2016.
"Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany,"
Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
- Hackbarth, André & Madlener, Reinhard, 2013. "Willingness-to-Pay for Alternative Fuel Vehicle Characteristics: A Stated Choice Study for Germany," FCN Working Papers 20/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Aurélie Glerum & Lidija Stankovikj & Michaël Thémans & Michel Bierlaire, 2014. "Forecasting the Demand for Electric Vehicles: Accounting for Attitudes and Perceptions," Transportation Science, INFORMS, vol. 48(4), pages 483-499, November.
- J�r�me Massiani, 2013. "The use of Stated Preferences to forecast alternative fuel vehicles market diffusion: Comparisons with other methods and proposal for a Synthetic Utility Function," Working Papers 2013:12, Department of Economics, University of Venice "Ca' Foscari".
- Lee, Yongseung & Kim, Chongman & Shin, Juneseuk, 2016. "A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach," Applied Energy, Elsevier, vol. 184(C), pages 438-449.
- Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
- Oliveira, Gabriela D. & Roth, Richard & Dias, Luis C., 2019. "Diffusion of alternative fuel vehicles considering dynamic preferences," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 83-99.
- Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
- Hackbarth, André & Madlener, Reinhard, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Shiau, Ching-Shin Norman & Michalek, Jeremy J. & Hendrickson, Chris T., 2009. "A structural analysis of vehicle design responses to Corporate Average Fuel Economy policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(9-10), pages 814-828, November.
- Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
- Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
- Pasaoglu, Guzay & Harrison, Gillian & Jones, Lee & Hill, Andrew & Beaudet, Alexandre & Thiel, Christian, 2016. "A system dynamics based market agent model simulating future powertrain technology transition: Scenarios in the EU light duty vehicle road transport sector," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 133-146.
- Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
- Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
- Mau, Paulus & Eyzaguirre, Jimena & Jaccard, Mark & Collins-Dodd, Colleen & Tiedemann, Kenneth, 2008. "The 'neighbor effect': Simulating dynamics in consumer preferences for new vehicle technologies," Ecological Economics, Elsevier, vol. 68(1-2), pages 504-516, December.
More about this item
Keywords
agent-based simulation; system dynamics; sustainable transport;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:48:y:2014:i:4:p:651-670. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.