The use of Stated Preferences to forecast alternative fuel vehicles market diffusion: Comparisons with other methods and proposal for a Synthetic Utility Function
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011.
"Willingness to pay for electric vehicles and their attributes,"
Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
- Michael K. Hidrue & George R. Parsons & Willett Kempton & Meryl Gardner, 2011. "Willingness to Pay for Electric Vehicles and their Attributes," Working Papers 11-02, University of Delaware, Department of Economics.
- John M. Rose & Michiel C. J. Bliemer, 2008. "Constructing Efficient Stated Choice Experimental Designs," Transport Reviews, Taylor & Francis Journals, vol. 29(5), pages 587-617, October.
- Achtnicht, Martin & Bühler, Georg & Hermeling, Claudia, 2008.
"Impact of Service Station Networks on Purchase Decisions of Alternative-fuel Vehicles,"
ZEW Discussion Papers
08-088, ZEW - Leibniz Centre for European Economic Research.
- Achtnicht, Martin & Bühler, Georg & Hermeling, Claudia, 2012. "Impact of service station networks on purchase decisions of alternative-fuel vehicles," ZEW Discussion Papers 08-088 [rev.], ZEW - Leibniz Centre for European Economic Research.
- Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," Department of Economics, Working Paper Series qt1j6814b3, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
- Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
- Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," Department of Economics, Working Paper Series qt3tb6j874, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
- Brownstone, David & Bunch, David S & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Department of Economics, Working Paper Series qt45f996hh, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Martin Achtnicht, 2012.
"German car buyers’ willingness to pay to reduce CO 2 emissions,"
Climatic Change, Springer, vol. 113(3), pages 679-697, August.
- Achtnicht, Martin, 2009. "German car buyers' willingness to pay to reduce CO2 emissions," ZEW Discussion Papers 09-058, ZEW - Leibniz Centre for European Economic Research.
- Achtnicht, Martin, 2012. "German car buyers' willingness to pay to reduce CO2 emissions," ZEW Discussion Papers 09-058 [rev.], ZEW - Leibniz Centre for European Economic Research.
- Dagsvik, John K. & Wennemo, Tom & Wetterwald, Dag G. & Aaberge, Rolf, 2002.
"Potential demand for alternative fuel vehicles,"
Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 361-384, May.
- John K. Dagsvik & Dag G. Wetterwald & Rolf Aaberge, 1996. "Potential Demand for Alternative Fuel Vehicles," Discussion Papers 165, Statistics Norway, Research Department.
- Ahn, Jiwoon & Jeong, Gicheol & Kim, Yeonbae, 2008. "A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach," Energy Economics, Elsevier, vol. 30(5), pages 2091-2104, September.
- Andreas Ziegler, 2010. "Individual Characteristics and Stated Preferences for Alternative Energy Sources and Propulsion Technologies in Vehicles: A Discrete Choice Analysis," CER-ETH Economics working paper series 10/125, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
- Brownstone, David & Train, Kenneth, 1998.
"Forecasting new product penetration with flexible substitution patterns,"
Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
- Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," Department of Economics, Working Paper Series qt3tb6j874, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," Department of Economics, Working Paper Series qt1j6814b3, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
- Calfee, John E., 1985. "Estimating the demand for electric automobiles using fully disaggregated probabilistic choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 287-301, August.
- Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," University of California Transportation Center, Working Papers qt3tb6j874, University of California Transportation Center.
- Brownstone, David & Bunch, David S & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," University of California Transportation Center, Working Papers qt45f996hh, University of California Transportation Center.
- Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
- Caulfield, Brian & Farrell, Séona & McMahon, Brian, 2010. "Examining individuals preferences for hybrid electric and alternatively fuelled vehicles," Transport Policy, Elsevier, vol. 17(6), pages 381-387, November.
- Brownstone, David & Bunch, David S. & Train, Kenneth, 2000.
"Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles,"
Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
- Brownstone, David & Bunch, David S & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," University of California Transportation Center, Working Papers qt45f996hh, University of California Transportation Center.
- Brownston, David & Bunch, David S. & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," University of California Transportation Center, Working Papers qt7rf7s3nx, University of California Transportation Center.
- Brownstone, David & Bunch, David S & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Department of Economics, Working Paper Series qt45f996hh, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Brownstone, David & Train, Kenneth, 1999. "Forecasting new product penetration with flexible substitution patterns," University of California Transportation Center, Working Papers qt1j6814b3, University of California Transportation Center.
- Frank M. Bass, 2004. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 50(12_supple), pages 1825-1832, December.
- Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Laurent Franckx, 2019. "Working Paper 01-19 - Future evolution of the car stock in Belgium: CASMO, the new satellite of PLANET," Working Papers 1901, Federal Planning Bureau, Belgium.
- Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2021. "Diffusion forecast for grid-tied rooftop solar photovoltaic technology under store-on grid scheme model in Sub-Saharan Africa: Government role assessment," Renewable Energy, Elsevier, vol. 180(C), pages 516-535.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- J�r�me Massiani, 2013. "SP surveys for electric and alternative fuel vehicles: are we doing the right thing?," Working Papers 2013_01, Department of Economics, University of Venice "Ca' Foscari".
- Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
- Hackbarth, André & Madlener, Reinhard, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Hackbarth, André & Madlener, Reinhard, 2016.
"Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany,"
Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
- Hackbarth, André & Madlener, Reinhard, 2013. "Willingness-to-Pay for Alternative Fuel Vehicle Characteristics: A Stated Choice Study for Germany," FCN Working Papers 20/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
- Takanori Ida & Kayo Murakami & Makoto Tanaka, 2012. "Keys to Smart Home Diffusion: A Stated Preference Analysis of Smart Meters, Photovoltaic Generation, and Electric/Hybrid Vehicles," Discussion papers e-11-011, Graduate School of Economics Project Center, Kyoto University.
- Thomas M. Fojcik & Heike Proff, 2014. "Accelerating market diffusion of battery electric vehicles through alternative mobility concepts," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(3/4), pages 347-368.
- Andreas Ziegler, 2010. "Individual Characteristics and Stated Preferences for Alternative Energy Sources and Propulsion Technologies in Vehicles: A Discrete Choice Analysis," CER-ETH Economics working paper series 10/125, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
- Milan Scasny & Milan Scasny & Iva Zverinova & Mikolaj Czajkowski, 2015. "Individual preference for the alternative fuel vehicles and their attributes in Poland," EcoMod2015 8575, EcoMod.
- Alexandros Dimitropoulos & Piet Rietveld & Jos N. van Ommeren, 2011. "Consumer Valuation of Driving Range: A Meta-Analysis," Tinbergen Institute Discussion Papers 11-133/3, Tinbergen Institute.
- Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
- Aurélie Glerum & Lidija Stankovikj & Michaël Thémans & Michel Bierlaire, 2014. "Forecasting the Demand for Electric Vehicles: Accounting for Attitudes and Perceptions," Transportation Science, INFORMS, vol. 48(4), pages 483-499, November.
- Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011.
"Willingness to pay for electric vehicles and their attributes,"
Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
- Michael K. Hidrue & George R. Parsons & Willett Kempton & Meryl Gardner, 2011. "Willingness to Pay for Electric Vehicles and their Attributes," Working Papers 11-02, University of Delaware, Department of Economics.
- Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
- Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
- Nobuyuki Ito & Kenji Takeuchi & Shunsuke Managi, 2012. "Willingness to pay for the infrastructure investments for alternative fuel vehicles," Discussion Papers 1207, Graduate School of Economics, Kobe University.
- Karsten Kieckhäfer & Thomas Volling & Thomas Stefan Spengler, 2014. "A Hybrid Simulation Approach for Estimating the Market Share Evolution of Electric Vehicles," Transportation Science, INFORMS, vol. 48(4), pages 651-670, November.
- Martin Achtnicht, 2012.
"German car buyers’ willingness to pay to reduce CO 2 emissions,"
Climatic Change, Springer, vol. 113(3), pages 679-697, August.
- Achtnicht, Martin, 2009. "German car buyers' willingness to pay to reduce CO2 emissions," ZEW Discussion Papers 09-058, ZEW - Leibniz Centre for European Economic Research.
- Achtnicht, Martin, 2012. "German car buyers' willingness to pay to reduce CO2 emissions," ZEW Discussion Papers 09-058 [rev.], ZEW - Leibniz Centre for European Economic Research.
- Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
- Bera, Reema & Maitra, Bhargab, 2021. "Assessing consumer preferences for Plug-in Hybrid Electric Vehicle (PHEV): An Indian perspective," Research in Transportation Economics, Elsevier, vol. 90(C).
More about this item
Keywords
Stated Preferences; Alternative fuel vehicle; market diffusion;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-DCM-2013-06-24 (Discrete Choice Models)
- NEP-ENE-2013-06-24 (Energy Economics)
- NEP-FOR-2013-06-24 (Forecasting)
- NEP-TRE-2013-06-24 (Transport Economics)
- NEP-UPT-2013-06-24 (Utility Models and Prospect Theory)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2013:12. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sassano Sonia (email available below). General contact details of provider: https://edirc.repec.org/data/dsvenit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.