IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v112y2008i2p665-682.html
   My bibliography  Save this article

Integrated scheduling of handling equipment at automated container terminals

Author

Listed:
  • Lau, Henry Y.K.
  • Zhao, Ying

Abstract

To improve the productivities of an automated container terminal, it is important to schedule different types of handling equipment in an integrated way. A mixed-integer programming model, which considers various constraints related to the integrated operations between different types of handling equipment, is formulated. This study proposes a heuristic method, called multi-layer genetic algorithm (MLGA) to obtain the near-optimal solution of the integrated scheduling problem and an improved heuristic algorithm, called genetic algorithm plus maximum matching (GAPM), to reduce the computation complexity of the MLGA method. The performance of GAPM is also compared with that of the MLGA method.

Suggested Citation

  • Lau, Henry Y.K. & Zhao, Ying, 2008. "Integrated scheduling of handling equipment at automated container terminals," International Journal of Production Economics, Elsevier, vol. 112(2), pages 665-682, April.
  • Handle: RePEc:eee:proeco:v:112:y:2008:i:2:p:665-682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(07)00237-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meersmans, P.J.M. & Wagelmans, A.P.M., 2001. "Dynamic Scheduling of Handling Equipment at Automated Container Terminals," ERIM Report Series Research in Management ERS-2001-69-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Nishimura, Etsuko & Imai, Akio & Papadimitriou, Stratos, 2005. "Yard trailer routing at a maritime container terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(1), pages 53-76, January.
    3. Meersmans, P.J.M. & Wagelmans, A.P.M., 2001. "Effective algorithms for integrated scheduling of handling equipment at automated container terminals," ERIM Report Series Research in Management ERS-2001-36-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Van Hee, K. M. & Huitink, B. & Leegwater, D. K., 1988. "PORTPLAN, decision support system for port terminals," European Journal of Operational Research, Elsevier, vol. 34(3), pages 249-261, March.
    5. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    6. Nishimura, Etsuko & Imai, Akio & Papadimitriou, Stratos, 2001. "Berth allocation planning in the public berth system by genetic algorithms," European Journal of Operational Research, Elsevier, vol. 131(2), pages 282-292, June.
    7. Kap Hwan Kim & Jong Wook Bae, 2004. "A Look-Ahead Dispatching Method for Automated Guided Vehicles in Automated Port Container Terminals," Transportation Science, INFORMS, vol. 38(2), pages 224-234, May.
    8. Young Kim, Ki & Hwan Kim, Kap, 1999. "A routing algorithm for a single straddle carrier to load export containers onto a containership," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 425-433, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shell Ying Huang & Ya Li, 2017. "Yard crane scheduling to minimize total weighted vessel loading time in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 689-720, December.
    2. Geraldine Knatz & Theo Notteboom & Athanasios A. Pallis, 2022. "Container terminal automation: revealing distinctive terminal characteristics and operating parameters," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 537-565, September.
    3. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    4. Feder, Christophe, 2018. "Decentralization and spillovers: A new role for transportation infrastructure," Economics of Transportation, Elsevier, vol. 13(C), pages 36-47.
    5. Zeng, Qingcheng & Yang, Zhongzhen & Lai, Luyuan, 2009. "Models and algorithms for multi-crane oriented scheduling method in container terminals," Transport Policy, Elsevier, vol. 16(5), pages 271-278, September.
    6. Leonard Heilig & Stefan Voß, 2017. "Inter-terminal transportation: an annotated bibliography and research agenda," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 35-63, March.
    7. Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.
    8. Harry Geerlings & Robert Heij & Ron van Duin, 2018. "Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-20, December.
    9. T. Jonker & M. B. Duinkerken & N. Yorke-Smith & A. Waal & R. R. Negenborn, 2021. "Coordinated optimization of equipment operations in a container terminal," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 281-311, June.
    10. Kaveshgar, Narges & Huynh, Nathan, 2015. "Integrated quay crane and yard truck scheduling for unloading inbound containers," International Journal of Production Economics, Elsevier, vol. 159(C), pages 168-177.
    11. Yan Zheng & Meixian Xu & Zhaohu Wang & Yujie Xiao, 2023. "A Genetic Algorithm for Integrated Scheduling of Container Handing Systems at Container Terminals from a Low-Carbon Operations Perspective," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    12. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    13. Dafnomilis, I. & Duinkerken, M.B. & Junginger, M. & Lodewijks, G. & Schott, D.L., 2018. "Optimal equipment deployment for biomass terminal operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 147-163.
    14. Kizilay, Damla & Hentenryck, Pascal Van & Eliiyi, Deniz T., 2020. "Constraint programming models for integrated container terminal operations," European Journal of Operational Research, Elsevier, vol. 286(3), pages 945-962.
    15. Wu, Yue & Luo, Jiabin & Zhang, Dali & Dong, Ming, 2013. "An integrated programming model for storage management and vehicle scheduling at container terminals," Research in Transportation Economics, Elsevier, vol. 42(1), pages 13-27.
    16. Di Luan & Mingjing Zhao & Qianru Zhao & Nan Wang, 2021. "Modelling of integrated scheduling problem of capacitated equipment systems with a multi-lane road network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-38, June.
    17. Longo, Francesco, 2010. "Design and integration of the containers inspection activities in the container terminal operations," International Journal of Production Economics, Elsevier, vol. 125(2), pages 272-283, June.
    18. Doaa Naeem & Amr Eltawil & Junichi Iijima & Mohamed Gheith, 2022. "Integrated Scheduling of Automated Yard Cranes and Automated Guided Vehicles with Limited Buffer Capacity of Dual-Trolley Quay Cranes in Automated Container Terminals," Logistics, MDPI, vol. 6(4), pages 1-17, December.
    19. Xi Guo & Shell Ying Huang, 2012. "Dynamic Space and Time Partitioning for Yard Crane Workload Management in Container Terminals," Transportation Science, INFORMS, vol. 46(1), pages 134-148, February.
    20. Issam AlHadid & Khalid Kaabneh & Hassan Tarawneh, 2018. "Hybrid Simulated Annealing with Meta-Heuristic Methods to Solve UCT Problem," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 385-385, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Briskorn, Dirk & Drexl, Andreas & Hartmann, Sönke, 2005. "Inventory based dispatching of automated guided vehicles on container terminals," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 596, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Henry Lau & Ying Zhao, 2008. "Integrated scheduling of handling equipment at automated container terminals," Annals of Operations Research, Springer, vol. 159(1), pages 373-394, March.
    3. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    4. Tang, Lixin & Zhao, Jiao & Liu, Jiyin, 2014. "Modeling and solution of the joint quay crane and truck scheduling problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 978-990.
    5. Wu, Yue & Luo, Jiabin & Zhang, Dali & Dong, Ming, 2013. "An integrated programming model for storage management and vehicle scheduling at container terminals," Research in Transportation Economics, Elsevier, vol. 42(1), pages 13-27.
    6. Zeng, Qingcheng & Yang, Zhongzhen & Lai, Luyuan, 2009. "Models and algorithms for multi-crane oriented scheduling method in container terminals," Transport Policy, Elsevier, vol. 16(5), pages 271-278, September.
    7. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    8. Maloni, Michael J. & Jackson, Eric C., 2007. "Stakeholder Contributions to Container Port Capacity: A Survey of Port Authorities," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 46(1).
    9. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    10. Di Luan & Mingjing Zhao & Qianru Zhao & Nan Wang, 2021. "Modelling of integrated scheduling problem of capacitated equipment systems with a multi-lane road network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-38, June.
    11. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    12. Choi, Byung-Cheon & Briskorn, Dirk & Lee, Kangbok & Leung, Joseph & Pinedo, Michael, 2008. "Allocating containers to ships with fixed departure times," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 641, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Vis, Iris F.A., 2006. "A comparative analysis of storage and retrieval equipment at a container terminal," International Journal of Production Economics, Elsevier, vol. 103(2), pages 680-693, October.
    14. Chen, Lu & Bostel, Nathalie & Dejax, Pierre & Cai, Jianguo & Xi, Lifeng, 2007. "A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal," European Journal of Operational Research, Elsevier, vol. 181(1), pages 40-58, August.
    15. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    16. Giallombardo, Giovanni & Moccia, Luigi & Salani, Matteo & Vacca, Ilaria, 2010. "Modeling and solving the Tactical Berth Allocation Problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 232-245, February.
    17. Ng, W. C., 2005. "Crane scheduling in container yards with inter-crane interference," European Journal of Operational Research, Elsevier, vol. 164(1), pages 64-78, July.
    18. Jiyin Liu & Yat‐wah Wan & Lei Wang, 2006. "Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 60-74, February.
    19. Nils Boysen & Joachim Scholl & Konrad Stephan, 2017. "When road trains supply freight trains: scheduling the container loading process by gantry crane between multi-trailer trucks and freight trains," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 137-164, January.
    20. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:112:y:2008:i:2:p:665-682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.