IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8562-d861643.html
   My bibliography  Save this article

Short-Term Forecast of OD Passenger Flow Based on Ensemble Empirical Mode Decomposition

Author

Listed:
  • Yi Cao

    (School of Transportation Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Xiaolei Hou

    (School of Transportation Engineering, Dalian Jiaotong University, Dalian 116028, China)

  • Nan Chen

    (School of Transportation Engineering, Dalian Jiaotong University, Dalian 116028, China)

Abstract

The development of metro systems can be a good solution to many problems in urban transport and promote sustainable urban development. A metro system plays an important role in urban public transit, and the passenger-flow forecasting is fundamental to assisting operators in establishing an intelligent transport system (ITS). In order to accurately predict the passenger flow of urban metros in different periods and provide a scientific basis for schedule planning, a short-term metro passenger-flow prediction model is constructed by integrating ensemble empirical mode decomposition (EEMD) and long short-term memory neural network (LSTM) to solve the problem that the existing empirical mode decomposition (EMD) is prone to modal aliasing. According to the processed metro-card data, the time series of historical OD data of metro passenger flow is obtained. After EEMD modal decomposition, several intrinsic mode functions sub-items and residual items are obtained. Then, an LSTM network is constructed for prediction. The time step of the network is decided according to the partial autocorrelation functions. The prediction results of intrinsic mode function (IMF) and residual items are integrated to obtain prediction results. The station is classified according to the land types around the station, and the model is tested by using the metro automatic fare collection (AFC) data. In order to test the actual prediction, a different number of training set samples are selected to predict. The measured data of the next day is continuously added to the original training set to compare the prediction accuracy. The results show that the mean absolute percentage error (MAPE) and root mean square error (RMSE) of the EEMD-LSTM model are better than the EMD-LSTM in predicting the OD value of commercial–residential stations and scenic–residential stations. Compared with the EMD-LSTM model, the EEMD-LSTM model showed an average reduction by 3.112% in MAPE values and 15.889 in RMSE, indicating that the EEMD-LSTM has higher prediction accuracy, and EEMD-LSTM model has higher accuracy in short-term metro passenger-flow prediction. The average MAPE for the 35-to-42-day historical data sample decreased from 13.02% to 10.39% with a decreasing trend. It shows that the prediction accuracy keeps improving as the training set samples increase.

Suggested Citation

  • Yi Cao & Xiaolei Hou & Nan Chen, 2022. "Short-Term Forecast of OD Passenger Flow Based on Ensemble Empirical Mode Decomposition," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8562-:d:861643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yibing Wang & Markos Papageorgiou & Albert Messmer, 2007. "Real-Time Freeway Traffic State Estimation Based on Extended Kalman Filter: A Case Study," Transportation Science, INFORMS, vol. 41(2), pages 167-181, May.
    2. Chuan Ding & Donggen Wang & Xiaolei Ma & Haiying Li, 2016. "Predicting Short-Term Subway Ridership and Prioritizing Its Influential Factors Using Gradient Boosting Decision Trees," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    2. Egu, Oscar & Bonnel, Patrick, 2021. "Medium-term public transit route ridership forecasting: What, how and why? A case study in Lyon," Transport Policy, Elsevier, vol. 105(C), pages 124-133.
    3. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    4. Yap, Menno & Munizaga, Marcela, 2018. "Workshop 8 report: Big data in the digital age and how it can benefit public transport users," Research in Transportation Economics, Elsevier, vol. 69(C), pages 615-620.
    5. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    6. Jeongwoo Lee & Marlon Boarnet & Douglas Houston & Hilary Nixon & Steven Spears, 2017. "Changes in Service and Associated Ridership Impacts near a New Light Rail Transit Line," Sustainability, MDPI, vol. 9(10), pages 1-27, October.
    7. Xuesong Feng & Zhibin Tao & Xuejun Niu & Zejing Ruan, 2021. "Multi-Objective Land Use Allocation Optimization in View of Overlapped Influences of Rail Transit Stations," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    8. Shruti Sachdeva & Tarunpreet Bhatia & A. K. Verma, 2018. "GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1399-1418, July.
    9. Xing, Jiping & Wu, Wei & Cheng, Qixiu & Liu, Ronghui, 2022. "Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    10. Deng, Wen & Lei, Hao & Zhou, Xuesong, 2013. "Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 132-157.
    11. Lee, Yongsung & Lee, Bumsoo, 2022. "What’s eating public transit in the United States? Reasons for declining transit ridership in the 2010s," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 126-143.
    12. Yiyi Chen & Ye Liu, 2021. "Which Risk Factors Matter More for Psychological Distress during the COVID-19 Pandemic? An Application Approach of Gradient Boosting Decision Trees," IJERPH, MDPI, vol. 18(11), pages 1-18, May.
    13. Yap, M.D. & Nijënstein, S. & van Oort, N., 2018. "Improving predictions of public transport usage during disturbances based on smart card data," Transport Policy, Elsevier, vol. 61(C), pages 84-95.
    14. Hongtai Yang & Jianjiang Yang & Lee D Han & Xiaohan Liu & Li Pu & Shih-miao Chin & Ho-ling Hwang, 2018. "A Kriging based spatiotemporal approach for traffic volume data imputation," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-11, April.
    15. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    16. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    17. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    18. Sun, Shaolong & Lu, Hongxu & Tsui, Kwok-Leung & Wang, Shouyang, 2019. "Nonlinear vector auto-regression neural network for forecasting air passenger flow," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 54-62.
    19. Yuan, Yun & Zhang, Zhao & Yang, Xianfeng Terry & Zhe, Shandian, 2021. "Macroscopic traffic flow modeling with physics regularized Gaussian process: A new insight into machine learning applications in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 88-110.
    20. Sumalee, A. & Zhong, R.X. & Pan, T.L. & Szeto, W.Y., 2011. "Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 507-533, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8562-:d:861643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.