IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v194y2012i1p177-18710.1007-s10479-010-0809-8.html
   My bibliography  Save this article

Flight gate scheduling with respect to a reference schedule

Author

Listed:
  • Ulrich Dorndorf
  • Florian Jaehn
  • Erwin Pesch

Abstract

This paper considers the problem of assigning flights to airport gates. We examine the general case in which an aircraft serving a flight may be assigned to different gates for arrival and departure processing and for optional intermediate parking. Restrictions to this assignment include gate closures and shadow restrictions, i.e., the situation where certain gate assignments may cause blocking of neighboring gates. The objectives include maximization of the total assignment preference score, a minimal number of unassigned flights during overload periods, minimization of the number of tows, maximization of a robustness measure as well as a minimal deviation from a given reference schedule. We show that in case of a one period time horizon this objective can easily be integrated into our existing model based on the Clique Partitioning Problem. Furthermore we present a heuristic algorithm to solve the problem for multiple periods. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2012. "Flight gate scheduling with respect to a reference schedule," Annals of Operations Research, Springer, vol. 194(1), pages 177-187, April.
  • Handle: RePEc:spr:annopr:v:194:y:2012:i:1:p:177-187:10.1007/s10479-010-0809-8
    DOI: 10.1007/s10479-010-0809-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-010-0809-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-010-0809-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burke, Edmund Kieran & Petrovic, Sanja, 2002. "Recent research directions in automated timetabling," European Journal of Operational Research, Elsevier, vol. 140(2), pages 266-280, July.
    2. Dorndorf, Ulrich, 2002. "Project scheduling with time windows: from theory to applications," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 3401, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2007. "Flight gate scheduling: State-of-the-art and recent developments," Omega, Elsevier, vol. 35(3), pages 326-334, June.
    4. Nikulin, Yury, 2006. "Robustness in combinatorial optimization and scheduling theory: An extended annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 606, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    5. Ulrich Dorndorf & Florian Jaehn & Chen Lin & Hui Ma & Erwin Pesch, 2007. "Disruption management in flight gate scheduling," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(1), pages 92-114, February.
    6. Yan, Shangyao & Tang, Ching-Hui, 2007. "A heuristic approach for airport gate assignments for stochastic flight delays," European Journal of Operational Research, Elsevier, vol. 180(2), pages 547-567, July.
    7. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2008. "Modelling Robust Flight-Gate Scheduling as a Clique Partitioning Problem," Transportation Science, INFORMS, vol. 42(3), pages 292-301, August.
    8. H Ding & A Lim & B Rodrigues & Y Zhu, 2004. "New heuristics for over-constrained flight to gate assignments," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 760-768, July.
    9. Bolat, Ahmet, 2000. "Procedures for providing robust gate assignments for arriving aircrafts," European Journal of Operational Research, Elsevier, vol. 120(1), pages 63-80, January.
    10. R. S. Mangoubi & Dennis F. X. Mathaisel, 1985. "Optimizing Gate Assignments at Airport Terminals," Transportation Science, INFORMS, vol. 19(2), pages 173-188, May.
    11. Yan, Shangyao & Huo, Cheun-Ming, 2001. "Optimization of multiple objective gate assignments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(5), pages 413-432, June.
    12. Ulrich Dorndorf & Erwin Pesch, 1994. "Fast Clustering Algorithms," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 141-153, May.
    13. Drexl, Andreas & Nikulin, Yury, 2006. "Fuzzy multicriteria flight gate assignment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 605, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Liang & Zhang, Chao & Xiao, Feng & Wang, Fan, 2017. "A robust approach to airport gate assignment with a solution-dependent uncertainty budget," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 458-478.
    2. Linlin Chen & Shuihua Han & Chaokan Du & Zongwei Luo, 2022. "A real-time integrated optimization of the aircraft holding time and rerouting under risk area," Annals of Operations Research, Springer, vol. 310(1), pages 7-26, March.
    3. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    4. Jovanovic, Raka & Sanfilippo, Antonio P. & Voß, Stefan, 2023. "Fixed set search applied to the clique partitioning problem," European Journal of Operational Research, Elsevier, vol. 309(1), pages 65-81.
    5. Bert Dijk & Bruno F. Santos & Joao P. Pita, 2019. "The recoverable robust stand allocation problem: a GRU airport case study," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 615-639, September.
    6. Hagspihl, Thomas & Kolisch, Rainer & Fontaine, Pirmin & Schiffels, Sebastian, 2024. "Apron layout planning–Optimal positioning of aircraft stands," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    7. Poyraz, Dursen Deniz & AzizoÄŸlu, Meral, 2024. "An airport gate reassignment problem with gate closures," Journal of Air Transport Management, Elsevier, vol. 115(C).
    8. Yin, Suwan & Han, Ke & Ochieng, Washington Yotto & Sanchez, Daniel Regueiro, 2022. "Joint apron-runway assignment for airport surface operations," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 76-100.
    9. Gülcin Ermis & Can Akkan, 2019. "Search algorithms for improving the pareto front in a timetabling problem with a solution network-based robustness measure," Annals of Operations Research, Springer, vol. 275(1), pages 101-121, April.
    10. Zhang, Dong & Klabjan, Diego, 2017. "Optimization for gate re-assignment," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 260-284.
    11. Zhao, Peixin & Han, Xue & Wan, Di, 2021. "Evaluation of the airport ferry vehicle scheduling based on network maximum flow model," Omega, Elsevier, vol. 99(C).
    12. Xue Han & Peixin Zhao & Qingchun Meng & Shengnan Yin & Di Wan, 2020. "Optimal scheduling of airport ferry vehicles based on capacity network," Annals of Operations Research, Springer, vol. 295(1), pages 163-182, December.
    13. Camelia Delcea & Liviu-Adrian Cotfas & Ramona Paun, 2018. "Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    14. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    2. Şeker, Merve & Noyan, Nilay, 2012. "Stochastic optimization models for the airport gate assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 438-459.
    3. Zhang, Dong & Klabjan, Diego, 2017. "Optimization for gate re-assignment," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 260-284.
    4. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    5. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2008. "Modelling Robust Flight-Gate Scheduling as a Clique Partitioning Problem," Transportation Science, INFORMS, vol. 42(3), pages 292-301, August.
    6. Bert Dijk & Bruno F. Santos & Joao P. Pita, 2019. "The recoverable robust stand allocation problem: a GRU airport case study," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 615-639, September.
    7. Guépet, J. & Acuna-Agost, R. & Briant, O. & Gayon, J.P., 2015. "Exact and heuristic approaches to the airport stand allocation problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 597-608.
    8. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2005. "Flight gate scheduling: State-of-the-art and recent developments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 584, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Amadeo Ascó, 2016. "An Analysis of Robustness Approaches for the Airport Baggage Sorting Station Assignment Problem," Journal of Optimization, Hindawi, vol. 2016, pages 1-19, September.
    10. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2022. "Learning-driven feasible and infeasible tabu search for airport gate assignment," European Journal of Operational Research, Elsevier, vol. 302(1), pages 172-186.
    11. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    12. Xu, Liang & Zhang, Chao & Xiao, Feng & Wang, Fan, 2017. "A robust approach to airport gate assignment with a solution-dependent uncertainty budget," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 458-478.
    13. Skorupski, Jacek & Żarów, Piotr, 2021. "Dynamic management of aircraft stand allocation," Journal of Air Transport Management, Elsevier, vol. 90(C).
    14. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2007. "Flight gate scheduling: State-of-the-art and recent developments," Omega, Elsevier, vol. 35(3), pages 326-334, June.
    15. Drexl, Andreas & Nikulin, Yury, 2005. "Multicriteria airport gate assignment and pareto simulated annealing," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 586, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    16. Yi Zhou & Jin-Kao Hao & Adrien Goëffon, 2016. "A three-phased local search approach for the clique partitioning problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 469-491, August.
    17. Jovanovic, Raka & Sanfilippo, Antonio P. & Voß, Stefan, 2023. "Fixed set search applied to the clique partitioning problem," European Journal of Operational Research, Elsevier, vol. 309(1), pages 65-81.
    18. Drexl, Andreas & Nikulin, Yuri, 2005. "Multicriteria time window-constrained project scheduling with applications to airport gate assignment. Part I: Methodology," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 595, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Bagamanova, Margarita & Mota, Miguel Mujica, 2020. "A multi-objective optimization with a delay-aware component for airport stand allocation," Journal of Air Transport Management, Elsevier, vol. 83(C).
    20. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:194:y:2012:i:1:p:177-187:10.1007/s10479-010-0809-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.