IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v156y2022icp76-100.html
   My bibliography  Save this article

Joint apron-runway assignment for airport surface operations

Author

Listed:
  • Yin, Suwan
  • Han, Ke
  • Ochieng, Washington Yotto
  • Sanchez, Daniel Regueiro

Abstract

Airport surface operations, such as off-block control, taxi routing, and runway sequencing, are typically confined to a fixed network topology with given origin–destination (O-D) pairs for departures and arrivals. Reconfiguring the O-D distribution of flights by actively assigning their aprons and runways is a potentially effective measure to maximize the utilization of network capacity. To date this has not been investigated in the literature due to its complexity involving operational constraints, assignment rules, and different stakeholders. This paper demonstrates the significant potential of O-D reconfiguration in improving surface network efficiency by proposing a joint apron-runway assignment framework for pre-tactical operations. This is underpinned by a comprehensive review of apron and runway assignment rules, including constraints and preferences, and an elaborated optimization scheme that encompasses lexicographic and iterative approaches along with temporal buffers to absorb uncertainties in pre-tactical operations. The proposed apron-runway assignment is implemented and assessed in a case study at Beijing Capital International Airport. An airport cellular automata simulator is employed for quantitative evaluation, and qualitative assessment is based on interviews with subject matter experts. Compared to the current operations, the proposed apron-runway assignment is very promising, with reductions in total taxiing distance, average taxiing time, taxiing conflicts, runway queuing time, and fuel consumption by 15.5% (Table 3), 6.2%, 19.8%, 17.6% (Table 4) and 6.6% (Table 5) respectively; gated assignment is increased by 11.8% (Table 4). Importantly, these benefits remain robust to unforeseen flight delays, as demonstrated in a sensitivity analysis.

Suggested Citation

  • Yin, Suwan & Han, Ke & Ochieng, Washington Yotto & Sanchez, Daniel Regueiro, 2022. "Joint apron-runway assignment for airport surface operations," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 76-100.
  • Handle: RePEc:eee:transb:v:156:y:2022:i:c:p:76-100
    DOI: 10.1016/j.trb.2021.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261521002356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    2. R. S. Mangoubi & Dennis F. X. Mathaisel, 1985. "Optimizing Gate Assignments at Airport Terminals," Transportation Science, INFORMS, vol. 19(2), pages 173-188, May.
    3. Zhang, Dong & Klabjan, Diego, 2017. "Optimization for gate re-assignment," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 260-284.
    4. Xu, Liang & Zhang, Chao & Xiao, Feng & Wang, Fan, 2017. "A robust approach to airport gate assignment with a solution-dependent uncertainty budget," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 458-478.
    5. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2012. "Flight gate scheduling with respect to a reference schedule," Annals of Operations Research, Springer, vol. 194(1), pages 177-187, April.
    6. Han, Ke & Szeto, W.Y. & Friesz, Terry L., 2015. "Formulation, existence, and computation of boundedly rational dynamic user equilibrium with fixed or endogenous user tolerance," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 16-49.
    7. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    8. Angel Marín & Esteve Codina, 2008. "Network design: taxi planning," Annals of Operations Research, Springer, vol. 157(1), pages 135-151, January.
    9. Han, Ke & Friesz, Terry L. & Szeto, W.Y. & Liu, Hongcheng, 2015. "Elastic demand dynamic network user equilibrium: Formulation, existence and computation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 183-209.
    10. Yan, Shangyao & Shieh, Chi-Yuan & Chen, Miawjane, 2002. "A simulation framework for evaluating airport gate assignments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(10), pages 885-898, December.
    11. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2008. "Modelling Robust Flight-Gate Scheduling as a Clique Partitioning Problem," Transportation Science, INFORMS, vol. 42(3), pages 292-301, August.
    12. S Ravizza & J A D Atkin & M H Maathuis & E K Burke, 2013. "A combined statistical approach and ground movement model for improving taxi time estimations at airports," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1347-1360, September.
    13. Şeker, Merve & Noyan, Nilay, 2012. "Stochastic optimization models for the airport gate assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 438-459.
    14. Tang, Ching-Hui & Wang, Wei-Chung, 2013. "Airport gate assignments for airline-specific gates," Journal of Air Transport Management, Elsevier, vol. 30(C), pages 10-16.
    15. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    16. Ángel Marín, 2006. "Airport management: taxi planning," Annals of Operations Research, Springer, vol. 143(1), pages 191-202, March.
    17. H Ding & A Lim & B Rodrigues & Y Zhu, 2004. "New heuristics for over-constrained flight to gate assignments," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 760-768, July.
    18. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yixuan Shan & Yuwei Shao & Qi Yuan & Yu Jiang, 2023. "Multiobjective Gate Assignment Model Considering Carbon Emissions," IJERPH, MDPI, vol. 20(5), pages 1-12, February.
    2. Chen, Shuiwang & Wu, Lingxiao & Ng, Kam K.H. & Liu, Wei & Wang, Kun, 2024. "How airports enhance the environmental sustainability of operations: A critical review from the perspective of Operations Research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    3. Liu, Wenjing & Zhao, Qiuhong & Delahaye, Daniel, 2022. "Research on slot allocation for airport network in the presence of uncertainty," Journal of Air Transport Management, Elsevier, vol. 104(C).
    4. Kim, Junyoung & Goo, Byungju & Roh, Youngjoo & Lee, Chungmok & Lee, Kyungsik, 2023. "A branch-and-price approach for airport gate assignment problem with chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 1-26.
    5. Hu, Rong & Wang, Deyun & Feng, Huilin & Zhang, Junfeng & Pan, Xiaoran & Deng, Songwu, 2024. "Joint gate-runway scheduling considering carbon emissions, airport noise and ground-air coordination," Journal of Air Transport Management, Elsevier, vol. 116(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bert Dijk & Bruno F. Santos & Joao P. Pita, 2019. "The recoverable robust stand allocation problem: a GRU airport case study," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 615-639, September.
    2. Zhang, Dong & Klabjan, Diego, 2017. "Optimization for gate re-assignment," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 260-284.
    3. Xu, Liang & Zhang, Chao & Xiao, Feng & Wang, Fan, 2017. "A robust approach to airport gate assignment with a solution-dependent uncertainty budget," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 458-478.
    4. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    5. Kim, Junyoung & Goo, Byungju & Roh, Youngjoo & Lee, Chungmok & Lee, Kyungsik, 2023. "A branch-and-price approach for airport gate assignment problem with chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 1-26.
    6. Karsu, Özlem & Azizoğlu, Meral & Alanlı, Kerem, 2021. "Exact and heuristic solution approaches for the airport gate assignment problem," Omega, Elsevier, vol. 103(C).
    7. Skorupski, Jacek & Żarów, Piotr, 2021. "Dynamic management of aircraft stand allocation," Journal of Air Transport Management, Elsevier, vol. 90(C).
    8. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2022. "Learning-driven feasible and infeasible tabu search for airport gate assignment," European Journal of Operational Research, Elsevier, vol. 302(1), pages 172-186.
    9. Hagspihl, Thomas & Kolisch, Rainer & Fontaine, Pirmin & Schiffels, Sebastian, 2024. "Apron layout planning–Optimal positioning of aircraft stands," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    10. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    11. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2005. "Flight gate scheduling: State-of-the-art and recent developments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 584, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Bagamanova, Margarita & Mota, Miguel Mujica, 2020. "A multi-objective optimization with a delay-aware component for airport stand allocation," Journal of Air Transport Management, Elsevier, vol. 83(C).
    13. Poyraz, Dursen Deniz & AzizoÄŸlu, Meral, 2024. "An airport gate reassignment problem with gate closures," Journal of Air Transport Management, Elsevier, vol. 115(C).
    14. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2012. "Flight gate scheduling with respect to a reference schedule," Annals of Operations Research, Springer, vol. 194(1), pages 177-187, April.
    15. Linlin Chen & Shuihua Han & Chaokan Du & Zongwei Luo, 2022. "A real-time integrated optimization of the aircraft holding time and rerouting under risk area," Annals of Operations Research, Springer, vol. 310(1), pages 7-26, March.
    16. Zhu, Feng & Ukkusuri, Satish V., 2017. "Efficient and fair system states in dynamic transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 272-289.
    17. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.
    18. Xue Han & Peixin Zhao & Qingchun Meng & Shengnan Yin & Di Wan, 2020. "Optimal scheduling of airport ferry vehicles based on capacity network," Annals of Operations Research, Springer, vol. 295(1), pages 163-182, December.
    19. Hu, Rong & Wang, Deyun & Feng, Huilin & Zhang, Junfeng & Pan, Xiaoran & Deng, Songwu, 2024. "Joint gate-runway scheduling considering carbon emissions, airport noise and ground-air coordination," Journal of Air Transport Management, Elsevier, vol. 116(C).
    20. Guépet, J. & Briant, O. & Gayon, J.P. & Acuna-Agost, R., 2016. "The aircraft ground routing problem: Analysis of industry punctuality indicators in a sustainable perspective," European Journal of Operational Research, Elsevier, vol. 248(3), pages 827-839.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:156:y:2022:i:c:p:76-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.