IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v100y2024i1d10.1007_s00186-024-00856-1.html
   My bibliography  Save this article

Column generation based solution for bi-objective gate assignment problems

Author

Listed:
  • Gülesin Sena Daş

    (Kırıkkale University
    De Montfort University)

  • Fatma Gzara

    (University of Waterloo)

Abstract

In this paper, we present a column generation-based algorithm for the bi-objective gate assignment problem (GAP) to generate gate schedules that minimize squared slack time at the gates while satisfying passenger expectations by minimizing their walking distance. While most of the literature focuses on heuristic or metaheuristic solutions for the bi-objective GAP, we propose flow-based and column-based models that lead to exact or near optimal solution approaches. The developed algorithm calculates a set of solutions to approximate the Pareto front. The algorithm is applied to the over-constrained GAP where gates are a limited resource and it is not possible to serve every flight using a gate. Our test cases are based on real data from an international airport and include various instances with flight-to-gate ratios between 23.9 and 34.7. Numerical results reveal that a set of solutions representing a compromise between the passenger-oriented and robustness-oriented objectives may be obtained with a tight optimality gap and within reasonable computational time even for these difficult problems.

Suggested Citation

  • Gülesin Sena Daş & Fatma Gzara, 2024. "Column generation based solution for bi-objective gate assignment problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 123-151, August.
  • Handle: RePEc:spr:mathme:v:100:y:2024:i:1:d:10.1007_s00186-024-00856-1
    DOI: 10.1007/s00186-024-00856-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-024-00856-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-024-00856-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan Yuan & Ping Yan & Liqiang Zhao, 2020. "Continuous Time Formulation and Lagrangian Relaxation Algorithm for the Gate Assignment Problem," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, August.
    2. R. S. Mangoubi & Dennis F. X. Mathaisel, 1985. "Optimizing Gate Assignments at Airport Terminals," Transportation Science, INFORMS, vol. 19(2), pages 173-188, May.
    3. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    4. Karsu, Özlem & Azizoğlu, Meral & Alanlı, Kerem, 2021. "Exact and heuristic solution approaches for the airport gate assignment problem," Omega, Elsevier, vol. 103(C).
    5. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2008. "Modelling Robust Flight-Gate Scheduling as a Clique Partitioning Problem," Transportation Science, INFORMS, vol. 42(3), pages 292-301, August.
    6. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    7. Şeker, Merve & Noyan, Nilay, 2012. "Stochastic optimization models for the airport gate assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 438-459.
    8. Tang, Ching-Hui & Wang, Wei-Chung, 2013. "Airport gate assignments for airline-specific gates," Journal of Air Transport Management, Elsevier, vol. 30(C), pages 10-16.
    9. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    10. Moradi, Siamak & Raith, Andrea & Ehrgott, Matthias, 2015. "A bi-objective column generation algorithm for the multi-commodity minimum cost flow problem," European Journal of Operational Research, Elsevier, vol. 244(2), pages 369-378.
    11. S. Ruzika & M. M. Wiecek, 2005. "Approximation Methods in Multiobjective Programming," Journal of Optimization Theory and Applications, Springer, vol. 126(3), pages 473-501, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Henggeler Antunes & Carlos M. Fonseca & Luís Paquete & Michael Stiglmayr, 2024. "Special issue on exact and approximation methods for mixed-integer multi-objective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 1-4, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    2. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2022. "Learning-driven feasible and infeasible tabu search for airport gate assignment," European Journal of Operational Research, Elsevier, vol. 302(1), pages 172-186.
    3. Yin, Suwan & Han, Ke & Ochieng, Washington Yotto & Sanchez, Daniel Regueiro, 2022. "Joint apron-runway assignment for airport surface operations," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 76-100.
    4. Zhang, Dong & Klabjan, Diego, 2017. "Optimization for gate re-assignment," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 260-284.
    5. Karsu, Özlem & Azizoğlu, Meral & Alanlı, Kerem, 2021. "Exact and heuristic solution approaches for the airport gate assignment problem," Omega, Elsevier, vol. 103(C).
    6. Skorupski, Jacek & Żarów, Piotr, 2021. "Dynamic management of aircraft stand allocation," Journal of Air Transport Management, Elsevier, vol. 90(C).
    7. Bert Dijk & Bruno F. Santos & Joao P. Pita, 2019. "The recoverable robust stand allocation problem: a GRU airport case study," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 615-639, September.
    8. Kim, Junyoung & Goo, Byungju & Roh, Youngjoo & Lee, Chungmok & Lee, Kyungsik, 2023. "A branch-and-price approach for airport gate assignment problem with chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 1-26.
    9. Hagspihl, Thomas & Kolisch, Rainer & Fontaine, Pirmin & Schiffels, Sebastian, 2024. "Apron layout planning–Optimal positioning of aircraft stands," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    10. Bagamanova, Margarita & Mota, Miguel Mujica, 2020. "A multi-objective optimization with a delay-aware component for airport stand allocation," Journal of Air Transport Management, Elsevier, vol. 83(C).
    11. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    12. Xu, Liang & Zhang, Chao & Xiao, Feng & Wang, Fan, 2017. "A robust approach to airport gate assignment with a solution-dependent uncertainty budget," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 458-478.
    13. I. Kaliszewski & J. Miroforidis, 2022. "Probing the Pareto front of a large-scale multiobjective problem with a MIP solver," Operational Research, Springer, vol. 22(5), pages 5617-5673, November.
    14. Guépet, J. & Acuna-Agost, R. & Briant, O. & Gayon, J.P., 2015. "Exact and heuristic approaches to the airport stand allocation problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 597-608.
    15. Poyraz, Dursen Deniz & AzizoÄŸlu, Meral, 2024. "An airport gate reassignment problem with gate closures," Journal of Air Transport Management, Elsevier, vol. 115(C).
    16. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2012. "Flight gate scheduling with respect to a reference schedule," Annals of Operations Research, Springer, vol. 194(1), pages 177-187, April.
    17. Rastegar, Narges & Khorram, Esmaile, 2014. "A combined scalarizing method for multiobjective programming problems," European Journal of Operational Research, Elsevier, vol. 236(1), pages 229-237.
    18. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    19. Metrane, Abdelmoutalib & Soumis, François & Elhallaoui, Issmail, 2010. "Column generation decomposition with the degenerate constraints in the subproblem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 37-44, November.
    20. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:100:y:2024:i:1:d:10.1007_s00186-024-00856-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.