IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v74y2006i2p397-429.html
   My bibliography  Save this article

Hard-to-Solve Bimatrix Games

Author

Listed:
  • Rahul Savani
  • Bernhard Stengel

Abstract

The Lemke-Howson algorithm is the classical method for finding one Nash equilibrium of a bimatrix game. This paper presents a class of square bimatrix games for which this algorithm takes, even in the best case, an exponential number of steps in the dimension d of the game. Using polytope theory, the games are constructed using pairs of dual cyclic polytopes with 2d suitably labeled facets in d-space. The construction is extended to nonsquare games where, in addition to exponentially long Lemke-Howson computations, finding an equilibrium by support enumeration takes on average exponential time. Copyright The Econometric Society 2006.

Suggested Citation

  • Rahul Savani & Bernhard Stengel, 2006. "Hard-to-Solve Bimatrix Games," Econometrica, Econometric Society, vol. 74(2), pages 397-429, March.
  • Handle: RePEc:ecm:emetrp:v:74:y:2006:i:2:p:397-429
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0262.2006.00667.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:74:y:2006:i:2:p:397-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.