A variant of Harsanyi's tracing procedures to select a perfect equilibrium in normal form games
Author
Abstract
Suggested Citation
DOI: 10.1016/j.geb.2022.04.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, April.
- Kreps, David M & Wilson, Robert, 1982.
"Sequential Equilibria,"
Econometrica, Econometric Society, vol. 50(4), pages 863-894, July.
- David Kreps & Robert Wilson, 1998. "Sequential Equilibria," Levine's Working Paper Archive 237, David K. Levine.
- David M Kreps & Robert Wilson, 2003. "Sequential Equilibria," Levine's Working Paper Archive 618897000000000813, David K. Levine.
- Chen, Yin & Dang, Chuangyin, 2020. "An extension of quantal response equilibrium and determination of perfect equilibrium," Games and Economic Behavior, Elsevier, vol. 124(C), pages 659-670.
- P. Herings & Ronald Peeters, 2010.
"Homotopy methods to compute equilibria in game theory,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
- Herings, P.J.J. & Peeters, R.J.A.P., 2006. "Homotopy methods to compute equilibria in game theory," Research Memorandum 046, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002.
"Computing Normal Form Perfect Equilibria for Extensive Two-Person Games,"
Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
- von Stengel, B. & van den Elzen, A.H. & Talman, A.J.J., 1997. "Computing normal form perfect equilibria for extensive two-person games," Research Memorandum 752, Tilburg University, School of Economics and Management.
- von Stengel, B. & van den Elzen, A.H. & Talman, A.J.J., 2002. "Computing normal form perfect equilibria for extensive two-person games," Other publications TiSEM 9f112346-b587-47f3-ad2e-6, Tilburg University, School of Economics and Management.
- von Stengel, B. & van den Elzen, A.H. & Talman, A.J.J., 1997. "Computing normal form perfect equilibria for extensive two-person games," Other publications TiSEM 4487e2bf-5bc1-47d3-819f-2, Tilburg University, School of Economics and Management.
- Herings, P. Jean-Jacques & van den Elzen, Antoon, 2002.
"Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games,"
Games and Economic Behavior, Elsevier, vol. 38(1), pages 89-117, January.
- Herings, P.J.J. & van den Elzen, A.H., 1998. "Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games," Discussion Paper 1998-04, Tilburg University, Center for Economic Research.
- Herings, P.J.J. & van den Elzen, A.H., 1998. "Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games," Other publications TiSEM f30f7bfb-4975-4851-ac39-0, Tilburg University, School of Economics and Management.
- van den Elzen, A.H. & Talman, A.J.J., 1995.
"An algorithmic approach towards the tracing procedure of Harsanyi and Selten,"
Other publications TiSEM
9d5e14b8-ab12-47a6-ae52-d, Tilburg University, School of Economics and Management.
- van den Elzen, A.H. & Talman, A.J.J., 1995. "An algorithmic approach towards the tracing procedure of Harsanyi and Selten," Discussion Paper 1995-111, Tilburg University, Center for Economic Research.
- Van Den Elzen,A. & Talman,D., 1995. "An Algorithmic Approach Towards the Tracing Procedure of Harsanyi and Selten," Papers 95111, Tilburg - Center for Economic Research.
- Etessami, Kousha, 2021. "The complexity of computing a (quasi-)perfect equilibrium for an n-player extensive form game," Games and Economic Behavior, Elsevier, vol. 125(C), pages 107-140.
- T. M. Doup & A. J. J. Talman, 1987.
"A Continuous Deformation Algorithm on the Product Space of Unit Simplices,"
Mathematics of Operations Research, INFORMS, vol. 12(3), pages 485-521, August.
- Doup, T.M. & Talman, A.J.J., 1985. "A continuous deformation algorithm on the product space of unit simplices," Other publications TiSEM fefeca71-7cb2-4bf8-9419-e, Tilburg University, School of Economics and Management.
- Talman, A.J.J. & Doup, T.M., 1987. "A continuous deformation algorithm on the product space of unit simplices," Other publications TiSEM 0f7c777f-9ae5-4218-b3bd-2, Tilburg University, School of Economics and Management.
- Doup, T.M. & Talman, A.J.J., 1985. "A continuous deformation algorithm on the product space of unit simplices," Research Memorandum FEW 168, Tilburg University, School of Economics and Management.
- van den Elzen, A.H. & Talman, A.J.J., 1988.
"A procedure for finding Nash equilibria in bi-matrix games,"
Research Memorandum
FEW 334, Tilburg University, School of Economics and Management.
- Talman, A.J.J. & van den Elzen, A.H., 1991. "A procedure for finding Nash equilibria in bi-matrix games," Other publications TiSEM 14df3398-1521-43ad-8803-a, Tilburg University, School of Economics and Management.
- van den Elzen, A.H. & Talman, A.J.J., 1988. "A procedure for finding Nash equilibria in bi-matrix games," Other publications TiSEM 580d39b9-a174-4eaa-842a-d, Tilburg University, School of Economics and Management.
- Talman, A.J.J. & van der Laan, G. & Van der Heyden, L., 1987. "Variable dimension algorithms for solving the nonlinear complementarity problem on a product of unit simplices using general labelling," Other publications TiSEM fbe9ae2f-e01d-4eef-944c-6, Tilburg University, School of Economics and Management.
- Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759, Elsevier.
- Pradelski, Bary S.R. & Young, H. Peyton, 2012.
"Learning efficient Nash equilibria in distributed systems,"
Games and Economic Behavior, Elsevier, vol. 75(2), pages 882-897.
- H Peyton Young & Bary S. R. Pradelski, 2010. "Learning Efficient Nash Equilibria in Distributed Systems," Economics Series Working Papers 480, University of Oxford, Department of Economics.
- B. Curtis Eaves, 1971. "The Linear Complementarity Problem," Management Science, INFORMS, vol. 17(9), pages 612-634, May.
- Richard Mckelvey & Thomas Palfrey, 1998.
"Quantal Response Equilibria for Extensive Form Games,"
Experimental Economics, Springer;Economic Science Association, vol. 1(1), pages 9-41, June.
- McKelvey, Richard D. & Palfrey, Thomas R., 1995. "Quantal Response Equilibria for Extensive Form Games," Working Papers 947, California Institute of Technology, Division of the Humanities and Social Sciences.
- Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
- Turocy, Theodore L., 2005. "A dynamic homotopy interpretation of the logistic quantal response equilibrium correspondence," Games and Economic Behavior, Elsevier, vol. 51(2), pages 243-263, May.
- Aumann, Robert J, 1987.
"Correlated Equilibrium as an Expression of Bayesian Rationality,"
Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
- Robert J. Aumann, 2010. "Correlated Equilibrium as an expression of Bayesian Rationality," Levine's Working Paper Archive 661465000000000377, David K. Levine.
- R. Aumann, 2010. "Correlated Equilibrium as an expression of Bayesian Rationality," Levine's Bibliography 513, UCLA Department of Economics.
- Zhang, Boyu & Hofbauer, Josef, 2016. "Quantal response methods for equilibrium selection in 2×2 coordination games," Games and Economic Behavior, Elsevier, vol. 97(C), pages 19-31.
- McKelvey Richard D. & Palfrey Thomas R., 1995.
"Quantal Response Equilibria for Normal Form Games,"
Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
- McKelvey, Richard D. & Palfrey, Thomas R., 1994. "Quantal Response Equilibria For Normal Form Games," Working Papers 883, California Institute of Technology, Division of the Humanities and Social Sciences.
- R. McKelvey & T. Palfrey, 2010. "Quantal Response Equilibria for Normal Form Games," Levine's Working Paper Archive 510, David K. Levine.
- Martin J. Osborne & Ariel Rubinstein, 1994.
"A Course in Game Theory,"
MIT Press Books,
The MIT Press,
edition 1, volume 1, number 0262650401, April.
- Martin J Osborne & Ariel Rubinstein, 2009. "A Course in Game Theory," Levine's Bibliography 814577000000000225, UCLA Department of Economics.
- Srihari Govindan & Robert Wilson, 2010.
"A decomposition algorithm for N-player games,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 97-117, January.
- Govindan, Srihari & Wilson, Robert B., 2007. "A Decomposition Algorithm for N-Player Games," Research Papers 1967, Stanford University, Graduate School of Business.
- P. Jean-Jacques Herings & Ronald J. A. P. Peeters, 2003.
"Equilibrium Selection In Stochastic Games,"
International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 307-326.
- Herings, P.J.J. & Peeters, R.J.A.P., 2001. "Equilibrium selection in stochastic games," Research Memorandum 019, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- P.Jean-Jacques Herings & Ronald J.A.P. Peeters, 2001. "Equilibrium Selection in Stochastic Games," Game Theory and Information 0205002, University Library of Munich, Germany.
- P. Jean-Jacques Herings, 2000.
"Two simple proofs of the feasibility of the linear tracing procedure,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(2), pages 485-490.
- Herings, P.J.J., 1997. "Two Simple Proofs of the Feasibility of the Linear Tracing Procedure," Discussion Paper 1997-77, Tilburg University, Center for Economic Research.
- Herings, P.J.J., 1997. "Two Simple Proofs of the Feasibility of the Linear Tracing Procedure," Other publications TiSEM aa81d194-cfe2-4200-8360-e, Tilburg University, School of Economics and Management.
- Zhang, Boyu, 2016. "Quantal response methods for equilibrium selection in normal form games," Journal of Mathematical Economics, Elsevier, vol. 64(C), pages 113-123.
- Chuangyin Dang, 1991. "The D1-Triangulation of Rn for Simplicial Algorithms for Computing Solutions of Nonlinear Equations," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 148-161, February.
- Theodore Turocy, 2010. "Computing sequential equilibria using agent quantal response equilibria," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 255-269, January.
- Herbert E. Scarf, 1967. "The Approximation of Fixed Points of a Continuous Mapping," Cowles Foundation Discussion Papers 216R, Cowles Foundation for Research in Economics, Yale University.
- Yin Chen & Chuangyin Dang, 2019. "A Reformulation-Based Simplicial Homotopy Method for Approximating Perfect Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 877-891, October.
- Talman, A.J.J. & van der Laan, G., 1979. "A restart algorithm for computing fixed points without an extra dimension," Other publications TiSEM 1f2102f8-e6da-4e9c-a2ed-9, Tilburg University, School of Economics and Management.
- Kohlberg, Elon & Mertens, Jean-Francois, 1986.
"On the Strategic Stability of Equilibria,"
Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
- KOHLBERG, Elon & MERTENS, Jean-François, 1986. "On the strategic stability of equilibria," LIDAM Reprints CORE 716, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- E. Kohlberg & J.-F. Mertens, 1998. "On the Strategic Stability of Equilibria," Levine's Working Paper Archive 445, David K. Levine.
- P. Jean-Jacques Herings & Ronald J.A.P. Peeters, 2001. "symposium articles: A differentiable homotopy to compute Nash equilibria of n -person games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 18(1), pages 159-185.
- Eaves, B. Curtis & Schmedders, Karl, 1999. "General equilibrium models and homotopy methods," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1249-1279, September.
- G. van der Laan & A. J. J. Talman & L. van der Heyden, 1987. "Simplicial Variable Dimension Algorithms for Solving the Nonlinear Complementarity Problem on a Product of Unit Simplices Using a General Labelling," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 377-397, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.
- Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1026-1062, June.
- Cao, Yiyin & Dang, Chuangyin & Xiao, Zhongdong, 2022. "A differentiable path-following method to compute subgame perfect equilibria in stationary strategies in robust stochastic games and its applications," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1032-1050.
- Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Differentiable Path-Following Method with a Compact Formulation to Compute Proper Equilibria," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 377-396, March.
- P. Herings & Ronald Peeters, 2010.
"Homotopy methods to compute equilibria in game theory,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
- Herings, P.J.J. & Peeters, R.J.A.P., 2006. "Homotopy methods to compute equilibria in game theory," Research Memorandum 046, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Peixuan Li & Chuangyin Dang & P. Jean-Jacques Herings, 2024.
"Computing perfect stationary equilibria in stochastic games,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(2), pages 347-387, September.
- Li, Peixuan & Dang, Chuangyin & Herings, P.J.J., 2023. "Computing Perfect Stationary Equilibria in Stochastic Games," Other publications TiSEM 5b68f5d7-3209-4a1b-924c-6, Tilburg University, School of Economics and Management.
- Li, Peixuan & Dang, Chuangyin & Herings, P.J.J., 2023. "Computing Perfect Stationary Equilibria in Stochastic Games," Discussion Paper 2023-006, Tilburg University, Center for Economic Research.
- Yin Chen & Chuangyin Dang, 2019. "A Reformulation-Based Simplicial Homotopy Method for Approximating Perfect Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 877-891, October.
- Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004.
"Stationary equilibria in stochastic games: structure, selection, and computation,"
Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
- Herings, P.J.J. & Peeters, R.J.A.P., 2000. "Stationary equilibria in stochastic games : structure, selection, and computation," Research Memorandum 031, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Bernhard Stengel, 2010. "Computation of Nash equilibria in finite games: introduction to the symposium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 1-7, January.
- Rahul Savani & Bernhard Stengel, 2015. "Game Theory Explorer: software for the applied game theorist," Computational Management Science, Springer, vol. 12(1), pages 5-33, January.
- Dang, Chuangyin & Meng, Xiaoxuan & Talman, Dolf, 2015.
"An Interior-Point Path-Following Method for Computing a Perfect Stationary Point of a Polynomial Mapping on a Polytope,"
Other publications TiSEM
07b7a0e7-f814-4ec2-a3a7-e, Tilburg University, School of Economics and Management.
- Dang, Chuangyin & Meng, Xiaoxuan & Talman, Dolf, 2015. "An Interior-Point Path-Following Method for Computing a Perfect Stationary Point of a Polynomial Mapping on a Polytope," Discussion Paper 2015-019, Tilburg University, Center for Economic Research.
- Stuart McDonald & Liam Wagner, 2010.
"The Computation of Perfect and Proper Equilibrium for Finite Games via Simulated Annealing,"
Risk & Uncertainty Working Papers
WPR10_1, Risk and Sustainable Management Group, University of Queensland, revised Apr 2010.
- McDonald, Stuart & Wagner, Liam, 2010. "The Computation of Perfect and Proper Equilibrium for Finite Games via Simulated Annealing," Risk and Sustainable Management Group Working Papers 151191, University of Queensland, School of Economics.
- Kendall, Ryan, 2021. "Sequential competitions with a middle-mover advantage," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 91(C).
- Turocy, Theodore L., 2005. "A dynamic homotopy interpretation of the logistic quantal response equilibrium correspondence," Games and Economic Behavior, Elsevier, vol. 51(2), pages 243-263, May.
- Theodore L. Turocy, 2002. "A Dynamic Homotopy Interpretation of Quantal Response Equilibrium Correspondences," Game Theory and Information 0212001, University Library of Munich, Germany, revised 16 Oct 2003.
- Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
- Steffen Eibelshäuser & Victor Klockmann & David Poensgen & Alicia von Schenk, 2023. "The Logarithmic Stochastic Tracing Procedure: A Homotopy Method to Compute Stationary Equilibria of Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1511-1526, November.
- Sam Ganzfried, 2020. "Fast Complete Algorithm for Multiplayer Nash Equilibrium," Papers 2002.04734, arXiv.org, revised Jan 2023.
- Herings, P. Jean-Jacques & van den Elzen, Antoon, 2002.
"Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games,"
Games and Economic Behavior, Elsevier, vol. 38(1), pages 89-117, January.
- Herings, P.J.J. & van den Elzen, A.H., 1998. "Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games," Discussion Paper 1998-04, Tilburg University, Center for Economic Research.
- Herings, P.J.J. & van den Elzen, A.H., 1998. "Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games," Other publications TiSEM f30f7bfb-4975-4851-ac39-0, Tilburg University, School of Economics and Management.
- Govindan, Srihari & Wilson, Robert, 2004. "Computing Nash equilibria by iterated polymatrix approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1229-1241, April.
More about this item
Keywords
Game theory; Nash equilibrium; Perfect equilibrium; Linear tracing procedure; Differentiable homotopy method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:134:y:2022:i:c:p:127-150. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.