IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v134y2022icp127-150.html
   My bibliography  Save this article

A variant of Harsanyi's tracing procedures to select a perfect equilibrium in normal form games

Author

Listed:
  • Cao, Yiyin
  • Dang, Chuangyin

Abstract

The linear tracing procedure plays a central role in the equilibrium selection theory of Harsanyi and Selten (1988). Nevertheless, it fails to always select a perfect equilibrium when there are more than two players. To fill this gap, we develop a variant of the linear tracing procedure by constituting a perturbed game in which each player maximizes her payoff against a linear convex combination between a totally mixed prior belief profile and a given mixed strategy profile of other players. Applying the optimality conditions to the integration of the perturbed game and a convex-quadratic-penalty game, we establish with a fixed-point argument and transformations on variables the existence of a smooth path from a unique starting point to a perfect equilibrium. Moreover, we present a variant of Harsanyi's logarithmic tracing procedure and a simplicial linear tracing procedure to select a perfect equilibrium.

Suggested Citation

  • Cao, Yiyin & Dang, Chuangyin, 2022. "A variant of Harsanyi's tracing procedures to select a perfect equilibrium in normal form games," Games and Economic Behavior, Elsevier, vol. 134(C), pages 127-150.
  • Handle: RePEc:eee:gamebe:v:134:y:2022:i:c:p:127-150
    DOI: 10.1016/j.geb.2022.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825622000719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2022.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, April.
    2. Kreps, David M & Wilson, Robert, 1982. "Sequential Equilibria," Econometrica, Econometric Society, vol. 50(4), pages 863-894, July.
    3. Chen, Yin & Dang, Chuangyin, 2020. "An extension of quantal response equilibrium and determination of perfect equilibrium," Games and Economic Behavior, Elsevier, vol. 124(C), pages 659-670.
    4. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    5. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    6. Herings, P. Jean-Jacques & van den Elzen, Antoon, 2002. "Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games," Games and Economic Behavior, Elsevier, vol. 38(1), pages 89-117, January.
    7. van den Elzen, A.H. & Talman, A.J.J., 1995. "An algorithmic approach towards the tracing procedure of Harsanyi and Selten," Other publications TiSEM 9d5e14b8-ab12-47a6-ae52-d, Tilburg University, School of Economics and Management.
    8. Etessami, Kousha, 2021. "The complexity of computing a (quasi-)perfect equilibrium for an n-player extensive form game," Games and Economic Behavior, Elsevier, vol. 125(C), pages 107-140.
    9. T. M. Doup & A. J. J. Talman, 1987. "A Continuous Deformation Algorithm on the Product Space of Unit Simplices," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 485-521, August.
    10. van den Elzen, A.H. & Talman, A.J.J., 1988. "A procedure for finding Nash equilibria in bi-matrix games," Research Memorandum FEW 334, Tilburg University, School of Economics and Management.
    11. Talman, A.J.J. & van der Laan, G. & Van der Heyden, L., 1987. "Variable dimension algorithms for solving the nonlinear complementarity problem on a product of unit simplices using general labelling," Other publications TiSEM fbe9ae2f-e01d-4eef-944c-6, Tilburg University, School of Economics and Management.
    12. Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759, Elsevier.
    13. Pradelski, Bary S.R. & Young, H. Peyton, 2012. "Learning efficient Nash equilibria in distributed systems," Games and Economic Behavior, Elsevier, vol. 75(2), pages 882-897.
    14. B. Curtis Eaves, 1971. "The Linear Complementarity Problem," Management Science, INFORMS, vol. 17(9), pages 612-634, May.
    15. Richard Mckelvey & Thomas Palfrey, 1998. "Quantal Response Equilibria for Extensive Form Games," Experimental Economics, Springer;Economic Science Association, vol. 1(1), pages 9-41, June.
    16. Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
    17. Turocy, Theodore L., 2005. "A dynamic homotopy interpretation of the logistic quantal response equilibrium correspondence," Games and Economic Behavior, Elsevier, vol. 51(2), pages 243-263, May.
    18. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    19. Zhang, Boyu & Hofbauer, Josef, 2016. "Quantal response methods for equilibrium selection in 2×2 coordination games," Games and Economic Behavior, Elsevier, vol. 97(C), pages 19-31.
    20. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    21. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, April.
    22. Srihari Govindan & Robert Wilson, 2010. "A decomposition algorithm for N-player games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 97-117, January.
    23. P. Jean-Jacques Herings & Ronald J. A. P. Peeters, 2003. "Equilibrium Selection In Stochastic Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 307-326.
    24. P. Jean-Jacques Herings, 2000. "Two simple proofs of the feasibility of the linear tracing procedure," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(2), pages 485-490.
    25. Zhang, Boyu, 2016. "Quantal response methods for equilibrium selection in normal form games," Journal of Mathematical Economics, Elsevier, vol. 64(C), pages 113-123.
    26. Chuangyin Dang, 1991. "The D1-Triangulation of Rn for Simplicial Algorithms for Computing Solutions of Nonlinear Equations," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 148-161, February.
    27. Theodore Turocy, 2010. "Computing sequential equilibria using agent quantal response equilibria," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 255-269, January.
    28. Herbert E. Scarf, 1967. "The Approximation of Fixed Points of a Continuous Mapping," Cowles Foundation Discussion Papers 216R, Cowles Foundation for Research in Economics, Yale University.
    29. Yin Chen & Chuangyin Dang, 2019. "A Reformulation-Based Simplicial Homotopy Method for Approximating Perfect Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 877-891, October.
    30. Talman, A.J.J. & van der Laan, G., 1979. "A restart algorithm for computing fixed points without an extra dimension," Other publications TiSEM 1f2102f8-e6da-4e9c-a2ed-9, Tilburg University, School of Economics and Management.
    31. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    32. P. Jean-Jacques Herings & Ronald J.A.P. Peeters, 2001. "symposium articles: A differentiable homotopy to compute Nash equilibria of n -person games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 18(1), pages 159-185.
    33. Eaves, B. Curtis & Schmedders, Karl, 1999. "General equilibrium models and homotopy methods," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1249-1279, September.
    34. G. van der Laan & A. J. J. Talman & L. van der Heyden, 1987. "Simplicial Variable Dimension Algorithms for Solving the Nonlinear Complementarity Problem on a Product of Unit Simplices Using a General Labelling," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 377-397, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.
    2. Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1026-1062, June.
    3. Cao, Yiyin & Dang, Chuangyin & Xiao, Zhongdong, 2022. "A differentiable path-following method to compute subgame perfect equilibria in stationary strategies in robust stochastic games and its applications," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1032-1050.
    4. Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Differentiable Path-Following Method with a Compact Formulation to Compute Proper Equilibria," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 377-396, March.
    5. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    6. Peixuan Li & Chuangyin Dang & P. Jean-Jacques Herings, 2024. "Computing perfect stationary equilibria in stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(2), pages 347-387, September.
    7. Yin Chen & Chuangyin Dang, 2019. "A Reformulation-Based Simplicial Homotopy Method for Approximating Perfect Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 877-891, October.
    8. Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004. "Stationary equilibria in stochastic games: structure, selection, and computation," Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
    9. Bernhard Stengel, 2010. "Computation of Nash equilibria in finite games: introduction to the symposium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 1-7, January.
    10. Rahul Savani & Bernhard Stengel, 2015. "Game Theory Explorer: software for the applied game theorist," Computational Management Science, Springer, vol. 12(1), pages 5-33, January.
    11. Dang, Chuangyin & Meng, Xiaoxuan & Talman, Dolf, 2015. "An Interior-Point Path-Following Method for Computing a Perfect Stationary Point of a Polynomial Mapping on a Polytope," Other publications TiSEM 07b7a0e7-f814-4ec2-a3a7-e, Tilburg University, School of Economics and Management.
    12. Stuart McDonald & Liam Wagner, 2010. "The Computation of Perfect and Proper Equilibrium for Finite Games via Simulated Annealing," Risk & Uncertainty Working Papers WPR10_1, Risk and Sustainable Management Group, University of Queensland, revised Apr 2010.
    13. Kendall, Ryan, 2021. "Sequential competitions with a middle-mover advantage," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 91(C).
    14. Turocy, Theodore L., 2005. "A dynamic homotopy interpretation of the logistic quantal response equilibrium correspondence," Games and Economic Behavior, Elsevier, vol. 51(2), pages 243-263, May.
    15. Theodore L. Turocy, 2002. "A Dynamic Homotopy Interpretation of Quantal Response Equilibrium Correspondences," Game Theory and Information 0212001, University Library of Munich, Germany, revised 16 Oct 2003.
    16. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    17. Steffen Eibelshäuser & Victor Klockmann & David Poensgen & Alicia von Schenk, 2023. "The Logarithmic Stochastic Tracing Procedure: A Homotopy Method to Compute Stationary Equilibria of Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1511-1526, November.
    18. Sam Ganzfried, 2020. "Fast Complete Algorithm for Multiplayer Nash Equilibrium," Papers 2002.04734, arXiv.org, revised Jan 2023.
    19. Herings, P. Jean-Jacques & van den Elzen, Antoon, 2002. "Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games," Games and Economic Behavior, Elsevier, vol. 38(1), pages 89-117, January.
    20. Govindan, Srihari & Wilson, Robert, 2004. "Computing Nash equilibria by iterated polymatrix approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1229-1241, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:134:y:2022:i:c:p:127-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.