IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v60y1992i5p1039-70.html
   My bibliography  Save this article

Computing Simply Stable Equilibria

Author

Listed:
  • Wilson, Robert

Abstract

For each two-player game, a linear-programming algorithm finds a component of the Nash equilibria and a subset of its perfect equilibria that are simply stable in the sense that there are nearby equilibria for each nearby game that perturbs one strategy's probability or payoff more than others. Copyright 1992 by The Econometric Society.

Suggested Citation

  • Wilson, Robert, 1992. "Computing Simply Stable Equilibria," Econometrica, Econometric Society, vol. 60(5), pages 1039-1070, September.
  • Handle: RePEc:ecm:emetrp:v:60:y:1992:i:5:p:1039-70
    as

    Download full text from publisher

    File URL: http://links.jstor.org/sici?sici=0012-9682%28199209%2960%3A5%3C1039%3ACSSE%3E2.0.CO%3B2-J&origin=repec
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    2. Theodore L. Turocy, 2002. "A Dynamic Homotopy Interpretation of Quantal Response Equilibrium Correspondences," Game Theory and Information 0212001, University Library of Munich, Germany, revised 16 Oct 2003.
    3. Belderbos, Rene & Carree, Martin & Lokshin, Boris, 2004. "Cooperative R&D and firm performance," Research Policy, Elsevier, vol. 33(10), pages 1477-1492, December.
    4. Govindan, Srihari & Wilson, Robert, 2004. "Computing Nash equilibria by iterated polymatrix approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1229-1241, April.
    5. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    6. Judd, Kenneth L., 1997. "Computational economics and economic theory: Substitutes or complements?," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 907-942, June.
    7. Turocy, Theodore L., 2005. "A dynamic homotopy interpretation of the logistic quantal response equilibrium correspondence," Games and Economic Behavior, Elsevier, vol. 51(2), pages 243-263, May.
    8. Bharat Adsul & Jugal Garg & Ruta Mehta & Milind Sohoni & Bernhard von Stengel, 2021. "Fast Algorithms for Rank-1 Bimatrix Games," Operations Research, INFORMS, vol. 69(2), pages 613-631, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:60:y:1992:i:5:p:1039-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.