IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v70y2010i1p4-11.html
   My bibliography  Save this article

Imitation games and computation

Author

Listed:
  • McLennan, Andrew
  • Tourky, Rabee

Abstract

An imitation game is a finite two person normal form game in which the two players have the same set of pure strategies and the goal of the second player is to choose the same pure strategy as the first player. We explain how, in two different settings, observations obtained from imitation games complete a circle of ideas, showing that phenomena that had for many years seemed to be distinct are actually superficially different manifestations of a single structure. First, one can pass from a given two person finite game to an imitation game whose Nash equilibria are in one-to-one correspondence with the Nash equilibria of the given game. Second, each of the paths of the procedure described in Lemke (1965) for solving a linear complementarity problem is the projection of the path of the Lemke-Howson algorithm applied to an imitation game.

Suggested Citation

  • McLennan, Andrew & Tourky, Rabee, 2010. "Imitation games and computation," Games and Economic Behavior, Elsevier, vol. 70(1), pages 4-11, September.
  • Handle: RePEc:eee:gamebe:v:70:y:2010:i:1:p:4-11
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(09)00163-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. McLennan, Andrew & Tourky, Rabee, 2008. "Games in oriented matroids," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 807-821, July.
    2. Gilboa, Itzhak & Zemel, Eitan, 1989. "Nash and correlated equilibria: Some complexity considerations," Games and Economic Behavior, Elsevier, vol. 1(1), pages 80-93, March.
    3. C. E. Lemke, 1965. "Bimatrix Equilibrium Points and Mathematical Programming," Management Science, INFORMS, vol. 11(7), pages 681-689, May.
    4. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    5. Rahul Savani & Bernhard Stengel, 2006. "Hard-to-Solve Bimatrix Games," Econometrica, Econometric Society, vol. 74(2), pages 397-429, March.
    6. McLennan, Andrew & Tourky, Rabee, 2010. "Simple complexity from imitation games," Games and Economic Behavior, Elsevier, vol. 68(2), pages 683-688, March.
    7. Walter D. Morris, 1994. "Lemke Paths on Simple Polytopes," Mathematics of Operations Research, INFORMS, vol. 19(4), pages 780-789, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahul Savani & Bernhard von Stengel, 2016. "Unit vector games," International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(1), pages 7-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bharat Adsul & Jugal Garg & Ruta Mehta & Milind Sohoni & Bernhard von Stengel, 2021. "Fast Algorithms for Rank-1 Bimatrix Games," Operations Research, INFORMS, vol. 69(2), pages 613-631, March.
    2. Rahul Savani & Bernhard von Stengel, 2016. "Unit vector games," International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(1), pages 7-27, March.
    3. Tim Roughgarden, 2018. "Complexity Theory, Game Theory, and Economics: The Barbados Lectures," Papers 1801.00734, arXiv.org, revised Feb 2020.
    4. Tim Roughgarden, 2010. "Computing equilibria: a computational complexity perspective," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 193-236, January.
    5. Rahul Savani & Bernhard Stengel, 2015. "Game Theory Explorer: software for the applied game theorist," Computational Management Science, Springer, vol. 12(1), pages 5-33, January.
    6. Jugal Garg & Ruta Mehta & Vijay V. Vaziranic, 2018. "Substitution with Satiation: A New Class of Utility Functions and a Complementary Pivot Algorithm," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 996-1024, August.
    7. Conitzer, Vincent & Sandholm, Tuomas, 2008. "New complexity results about Nash equilibria," Games and Economic Behavior, Elsevier, vol. 63(2), pages 621-641, July.
    8. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    9. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    10. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    11. Senthil K. Veeraraghavan & Laurens G. Debo, 2011. "Herding in Queues with Waiting Costs: Rationality and Regret," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 329-346, July.
    12. F. Forges & B. von Stengel, 2002. "Computionally Efficient Coordination in Games Trees," THEMA Working Papers 2002-05, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    13. McLennan, Andrew & Tourky, Rabee, 2008. "Games in oriented matroids," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 807-821, July.
    14. Vincent Conitzer, 2019. "The Exact Computational Complexity of Evolutionarily Stable Strategies," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 783-792, August.
    15. Amir Ali Ahmadi & Jeffrey Zhang, 2021. "Semidefinite Programming and Nash Equilibria in Bimatrix Games," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 607-628, May.
    16. P. Giovani Palafox-Alcantar & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Hybrid Methodology to Study Stakeholder Cooperation in Circular Economy Waste Management of Cities," Energies, MDPI, vol. 13(7), pages 1-30, April.
    17. Zhang, Bin, 2012. "Multi-tier binary solution method for multi-product newsvendor problem with multiple constraints," European Journal of Operational Research, Elsevier, vol. 218(2), pages 426-434.
    18. Jun Honda, 2015. "Games with the Total Bandwagon Property," Department of Economics Working Papers wuwp197, Vienna University of Economics and Business, Department of Economics.
    19. Sung, Shao-Chin & Dimitrov, Dinko, 2010. "Computational complexity in additive hedonic games," European Journal of Operational Research, Elsevier, vol. 203(3), pages 635-639, June.
    20. Thomas Demuynck, 2014. "The computational complexity of rationalizing Pareto optimal choice behavior," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(3), pages 529-549, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:70:y:2010:i:1:p:4-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.