IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v298y2022i3p1032-1050.html
   My bibliography  Save this article

A differentiable path-following method to compute subgame perfect equilibria in stationary strategies in robust stochastic games and its applications

Author

Listed:
  • Cao, Yiyin
  • Dang, Chuangyin
  • Xiao, Zhongdong

Abstract

As an effective paradigm to address uncertainty in payoffs and transition probabilities, robust stochastic games have been formulated in the literature. This paper is concerned with the computation of subgame perfect equilibria in stationary strategies (SSPEs) in robust stochastic games. To tackle this problem, we develop in this paper a globally convergent differentiable path-following method by exploiting the structures of the games. Incorporating a logarithmic-barrier term into each player’s payoff function with an extra variable between zero and one, we constitute a logarithmic-barrier robust stochastic game in which each player solves in each state a convex optimization problem. An application of the optimality conditions to the barrier game together with a fixed-point argument yields a polynomial equilibrium system for the barrier game. As a result of this system, we establish the existence of a smooth path that starts from an arbitrary mixed strategy profile and ends at an SSPE as the extra variable descends from one to zero. As an alternative scheme, we make up a convex-quadratic-penalty robust stochastic game and attain a globally convergent convex-quadratic-penalty differentiable path-following method for SSPEs in robust stochastic games. Numerical comparisons show that the logarithmic-barrier path-following method significantly outperforms the convex-quadratic-penalty path-following method. To further evince the value of the proposed methods, we apply the logarithmic-barrier path-following method to solve a supply chain configuration problem and a market entry problem from medical waste recycling.

Suggested Citation

  • Cao, Yiyin & Dang, Chuangyin & Xiao, Zhongdong, 2022. "A differentiable path-following method to compute subgame perfect equilibria in stationary strategies in robust stochastic games and its applications," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1032-1050.
  • Handle: RePEc:eee:ejores:v:298:y:2022:i:3:p:1032-1050
    DOI: 10.1016/j.ejor.2021.06.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721005907
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.06.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    2. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    3. Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004. "Stationary equilibria in stochastic games: structure, selection, and computation," Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
    4. Ariel Pakes & Paul McGuire, 1994. "Computing Markov-Perfect Nash Equilibria: Numerical Implications of a Dynamic Differentiated Product Model," RAND Journal of Economics, The RAND Corporation, vol. 25(4), pages 555-589, Winter.
    5. Amnon Rapoport & Darryl A. Seale & Ido Erev & James A. Sundali, 1998. "Equilibrium Play in Large Group Market Entry Games," Management Science, INFORMS, vol. 44(1), pages 119-141, January.
    6. P. Herings & Karl Schmedders, 2006. "Computing equilibria in finance economies with incomplete markets and transaction costs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 27(3), pages 493-512, April.
    7. Parilina, Elena & Sedakov, Artem & Zaccour, Georges, 2017. "Price of anarchy in a linear-state stochastic dynamic game," European Journal of Operational Research, Elsevier, vol. 258(2), pages 790-800.
    8. Houyuan Jiang & Serguei Netessine & Sergei Savin, 2011. "TECHNICAL NOTE---Robust Newsvendor Competition Under Asymmetric Information," Operations Research, INFORMS, vol. 59(1), pages 254-261, February.
    9. Dai, Y. & van der Laan, G. & Talman, A.J.J. & Yamamoto, Y., 1989. "A simplicial algorithm for the nonlinear stationary point problem on an unbounded polyhedron," Discussion Paper 1989-52, Tilburg University, Center for Economic Research.
    10. Mandel, Antoine & Venel, Xavier, 2020. "Dynamic competition over social networks," European Journal of Operational Research, Elsevier, vol. 280(2), pages 597-608.
    11. Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759, Elsevier.
    12. David Besanko & Ulrich Doraszelski & Yaroslav Kryukov & Mark Satterthwaite, 2010. "Learning-by-Doing, Organizational Forgetting, and Industry Dynamics," Econometrica, Econometric Society, vol. 78(2), pages 453-508, March.
    13. Hyoduk Shin & Tunay I. Tunca, 2010. "Do Firms Invest in Forecasting Efficiently? The Effect of Competition on Demand Forecast Investments and Supply Chain Coordination," Operations Research, INFORMS, vol. 58(6), pages 1592-1610, December.
    14. Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
    15. Chaim Fershtman & Ariel Pakes, 2012. "Dynamic Games with Asymmetric Information: A Framework for Empirical Work," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(4), pages 1611-1661.
    16. Srihari Govindan & Robert Wilson, 2010. "A decomposition algorithm for N-player games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 97-117, January.
    17. Garrec, Tristan & Scarsini, Marco, 2020. "Search for an immobile hider on a stochastic network," European Journal of Operational Research, Elsevier, vol. 283(2), pages 783-794.
    18. Zeynep Müge Avsar & Melike Baykal‐Gürsoy, 2002. "Inventory control under substitutable demand: A stochastic game application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(4), pages 359-375, June.
    19. Richard Ericson & Ariel Pakes, 1995. "Markov-Perfect Industry Dynamics: A Framework for Empirical Work," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(1), pages 53-82.
    20. Chuangyin Dang, 1991. "The D1-Triangulation of Rn for Simplicial Algorithms for Computing Solutions of Nonlinear Equations," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 148-161, February.
    21. Deutsch, Yael, 2021. "A polynomial-time method to compute all Nash equilibria solutions of a general two-person inspection game," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1036-1052.
    22. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    23. Shapiro, Alexander, 2021. "Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 288(1), pages 1-13.
    24. Herbert E. Scarf, 1967. "The Approximation of Fixed Points of a Continuous Mapping," Cowles Foundation Discussion Papers 216R, Cowles Foundation for Research in Economics, Yale University.
    25. Zhengyong Zhou & Bo Yu, 2014. "A smoothing homotopy method for variational inequality problems on polyhedral convex sets," Journal of Global Optimization, Springer, vol. 58(1), pages 151-168, January.
    26. Erim Kardeş & Fernando Ordóñez & Randolph W. Hall, 2011. "Discounted Robust Stochastic Games and an Application to Queueing Control," Operations Research, INFORMS, vol. 59(2), pages 365-382, April.
    27. Flesch, J. & Thuijsman, F. & Vrieze, O.J., 2007. "Stochastic games with additive transitions," European Journal of Operational Research, Elsevier, vol. 179(2), pages 483-497, June.
    28. Ron N. Borkovsky & Ulrich Doraszelski & Yaroslav Kryukov, 2010. "A User's Guide to Solving Dynamic Stochastic Games Using the Homotopy Method," Operations Research, INFORMS, vol. 58(4-part-2), pages 1116-1132, August.
    29. Peixuan Li & Chuangyin Dang, 2020. "An Arbitrary Starting Tracing Procedure for Computing Subgame Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 667-687, August.
    30. Palmer, Karen & Walls, Margaret, 1997. "Optimal policies for solid waste disposal Taxes, subsidies, and standards," Journal of Public Economics, Elsevier, vol. 65(2), pages 193-205, August.
    31. Doup, T.M. & Talman, A.J.J., 1987. "A new simplicial variable dimension algorithm to find equilibria on the product space of unit simplices," Other publications TiSEM 398740e7-fdc2-41b6-968f-4, Tilburg University, School of Economics and Management.
    32. Caballero, William N. & Lunday, Brian J. & Uber, Richard P., 2021. "Identifying behaviorally robust strategies for normal form games under varying forms of uncertainty," European Journal of Operational Research, Elsevier, vol. 288(3), pages 971-982.
    33. Jeroen Beliën & Liesje De Boeck & Jonas Van Ackere, 2014. "Municipal Solid Waste Collection and Management Problems: A Literature Review," Transportation Science, INFORMS, vol. 48(1), pages 78-102, February.
    34. Liu, Yongchao & Xu, Huifu & Yang, Shu-Jung Sunny & Zhang, Jin, 2018. "Distributionally robust equilibrium for continuous games: Nash and Stackelberg models," European Journal of Operational Research, Elsevier, vol. 265(2), pages 631-643.
    35. C. Gizem Korpeoglu & Ersin Körpeoğlu & Soo-Haeng Cho, 2020. "Supply Chain Competition: A Market Game Approach," Management Science, INFORMS, vol. 66(12), pages 5648-5664, December.
    36. Maskin, Eric & Tirole, Jean, 2001. "Markov Perfect Equilibrium: I. Observable Actions," Journal of Economic Theory, Elsevier, vol. 100(2), pages 191-219, October.
    37. Talman, A.J.J. & van der Laan, G., 1979. "A restart algorithm for computing fixed points without an extra dimension," Other publications TiSEM 1f2102f8-e6da-4e9c-a2ed-9, Tilburg University, School of Economics and Management.
    38. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    39. P. Jean-Jacques Herings & Ronald J.A.P. Peeters, 2001. "symposium articles: A differentiable homotopy to compute Nash equilibria of n -person games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 18(1), pages 159-185.
    40. van den Elzen, Antoon & Talman, Dolf, 1999. "An Algorithmic Approach toward the Tracing Procedure for Bi-matrix Games," Games and Economic Behavior, Elsevier, vol. 28(1), pages 130-145, July.
    41. Adlakha, Sachin & Johari, Ramesh & Weintraub, Gabriel Y., 2015. "Equilibria of dynamic games with many players: Existence, approximation, and market structure," Journal of Economic Theory, Elsevier, vol. 156(C), pages 269-316.
    42. Eaves, B. Curtis & Schmedders, Karl, 1999. "General equilibrium models and homotopy methods," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1249-1279, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bae, Sang Hoo & Zhu, Qingyun & Sarkis, Joseph, 2024. "Supply chain interactions and strategic product deletion Decisions: A Game-Theoretic analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Differentiable Path-Following Method with a Compact Formulation to Compute Proper Equilibria," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 377-396, March.
    2. Cao, Yiyin & Dang, Chuangyin, 2022. "A variant of Harsanyi's tracing procedures to select a perfect equilibrium in normal form games," Games and Economic Behavior, Elsevier, vol. 134(C), pages 127-150.
    3. Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.
    4. Dang, Chuangyin & Herings, P. Jean-Jacques & Li, Peixuan, 2020. "An Interior-Point Path-Following Method to Compute Stationary Equilibria in Stochastic Games," Research Memorandum 001, Maastricht University, Graduate School of Business and Economics (GSBE).
    5. Peixuan Li & Chuangyin Dang & P. Jean-Jacques Herings, 2024. "Computing perfect stationary equilibria in stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(2), pages 347-387, September.
    6. Peixuan Li & Chuangyin Dang & P. Jean-Jacques Herings, 2024. "Computing perfect stationary equilibria in stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(2), pages 347-387, September.
    7. Dang, Chuangyin & Meng, Xiaoxuan & Talman, Dolf, 2015. "An Interior-Point Path-Following Method for Computing a Perfect Stationary Point of a Polynomial Mapping on a Polytope," Other publications TiSEM 07b7a0e7-f814-4ec2-a3a7-e, Tilburg University, School of Economics and Management.
    8. Yang Zhan & Peixuan Li & Chuangyin Dang, 2020. "A differentiable path-following algorithm for computing perfect stationary points," Computational Optimization and Applications, Springer, vol. 76(2), pages 571-588, June.
    9. Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1026-1062, June.
    10. Chuangyin Dang & P. Jean-Jacques Herings & Peixuan Li, 2022. "An Interior-Point Differentiable Path-Following Method to Compute Stationary Equilibria in Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1403-1418, May.
    11. Herings, P. Jean-Jacques & Zhan, Yang, 2021. "The computation of pairwise stable networks," Research Memorandum 004, Maastricht University, Graduate School of Business and Economics (GSBE).
    12. Ron N. Borkovsky & Ulrich Doraszelski & Yaroslav Kryukov, 2010. "A User's Guide to Solving Dynamic Stochastic Games Using the Homotopy Method," Operations Research, INFORMS, vol. 58(4-part-2), pages 1116-1132, August.
    13. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    14. Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004. "Stationary equilibria in stochastic games: structure, selection, and computation," Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
    15. Stuart McDonald & Liam Wagner, 2010. "The Computation of Perfect and Proper Equilibrium for Finite Games via Simulated Annealing," Risk & Uncertainty Working Papers WPR10_1, Risk and Sustainable Management Group, University of Queensland, revised Apr 2010.
    16. Yin Chen & Chuangyin Dang, 2019. "A Reformulation-Based Simplicial Homotopy Method for Approximating Perfect Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 877-891, October.
    17. Steffen Eibelshäuser & Victor Klockmann & David Poensgen & Alicia von Schenk, 2023. "The Logarithmic Stochastic Tracing Procedure: A Homotopy Method to Compute Stationary Equilibria of Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1511-1526, November.
    18. Peixuan Li & Chuangyin Dang, 2020. "An Arbitrary Starting Tracing Procedure for Computing Subgame Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 667-687, August.
    19. Doraszelski, Ulrich & Satterthwaite, Mark, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," CEPR Discussion Papers 6212, C.E.P.R. Discussion Papers.
    20. Ulrich Doraszelski & Mark Satterthwaite, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," Levine's Bibliography 321307000000000912, UCLA Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:298:y:2022:i:3:p:1032-1050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.