IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v147y2024icp19-37.html
   My bibliography  Save this article

Bicriteria Nash flows over time

Author

Listed:
  • Oosterwijk, Tim
  • Schmand, Daniel
  • Schröder, Marc

Abstract

Flows over time are a natural way to incorporate flow dynamics that arise in various applications such as traffic networks. In this paper we introduce a natural variant of the deterministic fluid queuing model in which users aim to minimize their costs subject to arrival at their destination before a pre-specified deadline. We determine the existence and the structure of Nash flows over time and fully characterize the price of anarchy for this model. The price of anarchy measures the ratio of the quality of the equilibrium and the quality of the optimum flow, where we evaluate the quality using two different natural performance measures: the throughput for a given deadline and the makespan for a given amount of flow. While it turns out that both prices of anarchy can be unbounded in general, we provide tight bounds for the important subclass of parallel path graphs.

Suggested Citation

  • Oosterwijk, Tim & Schmand, Daniel & Schröder, Marc, 2024. "Bicriteria Nash flows over time," Games and Economic Behavior, Elsevier, vol. 147(C), pages 19-37.
  • Handle: RePEc:eee:gamebe:v:147:y:2024:i:c:p:19-37
    DOI: 10.1016/j.geb.2024.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825624000836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2024.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frédéric Meunier & Nicolas Wagner, 2010. "Equilibrium Results for Dynamic Congestion Games," Transportation Science, INFORMS, vol. 44(4), pages 524-536, November.
    2. Ramesh Johari & Gabriel Y. Weintraub & Benjamin Van Roy, 2010. "Investment and Market Structure in Industries with Congestion," Operations Research, INFORMS, vol. 58(5), pages 1303-1317, October.
    3. Roberto Cominetti & José Correa & Omar Larré, 2015. "Dynamic Equilibria in Fluid Queueing Networks," Operations Research, INFORMS, vol. 63(1), pages 21-34, February.
    4. L. R. Ford & D. R. Fulkerson, 1958. "Constructing Maximal Dynamic Flows from Static Flows," Operations Research, INFORMS, vol. 6(3), pages 419-433, June.
    5. Philipp von Falkenhausen & Tobias Harks, 2013. "Optimal Cost Sharing for Resource Selection Games," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 184-208, February.
    6. Daron Acemoglu & Asuman Ozdaglar, 2007. "Competition and Efficiency in Congested Markets," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 1-31, February.
    7. Daniel Schmand, 2021. "Recent Developments in Mathematical Traffic Models," Springer Books, in: Michael Freitag & Herbert Kotzab & Nicole Megow (ed.), Dynamics in Logistics, pages 71-87, Springer.
    8. Bhaskar, Umang & Fleischer, Lisa & Anshelevich, Elliot, 2015. "A Stackelberg strategy for routing flow over time," Games and Economic Behavior, Elsevier, vol. 92(C), pages 232-247.
    9. Harks, Tobias & Schröder, Marc & Vermeulen, Dries, 2019. "Toll caps in privatized road networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 947-956.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Wentao & Jian, Sisi & Rey, David, 2024. "Non-additive network pricing with non-cooperative mobility service providers," European Journal of Operational Research, Elsevier, vol. 318(3), pages 802-824.
    2. Roberto Cominetti & José Correa & Omar Larré, 2015. "Dynamic Equilibria in Fluid Queueing Networks," Operations Research, INFORMS, vol. 63(1), pages 21-34, February.
    3. Melo, Emerson, 2014. "Price competition, free entry, and welfare in congested markets," Games and Economic Behavior, Elsevier, vol. 83(C), pages 53-72.
    4. Cominetti, Roberto & Dose, Valerio & Scarsini, Marco, 2024. "Monotonicity of equilibria in nonatomic congestion games," European Journal of Operational Research, Elsevier, vol. 316(2), pages 754-766.
    5. Liu, Tian-Liang & Chen, Jian & Huang, Hai-Jun, 2011. "Existence and efficiency of oligopoly equilibrium under toll and capacity competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 908-919.
    6. Harks, Tobias & Schröder, Marc & Vermeulen, Dries, 2019. "Toll caps in privatized road networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 947-956.
    7. Georgia Perakis & Wei Sun, 2014. "Efficiency Analysis of Cournot Competition in Service Industries with Congestion," Management Science, INFORMS, vol. 60(11), pages 2684-2700, November.
    8. Yuya Higashikawa & Naoki Katoh, 2019. "A Survey on Facility Location Problems in Dynamic Flow Networks," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 163-208, October.
    9. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    10. Randall Berry & Michael Honig & Thành Nguyen & Vijay Subramanian & Rakesh Vohra, 2020. "The Value of Sharing Intermittent Spectrum," Management Science, INFORMS, vol. 66(11), pages 5242-5264, November.
    11. Soeiro, Renato & Adrego Pinto, Alberto, 2019. "Social power as a solution to the Bertrand Paradox," MPRA Paper 94271, University Library of Munich, Germany.
    12. Tobias Harks & Martin Hoefer & Anja Schedel & Manuel Surek, 2021. "Efficient Black-Box Reductions for Separable Cost Sharing," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 134-158, February.
    13. Tami Tamir, 2023. "Cost-sharing games in real-time scheduling systems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 273-301, March.
    14. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    15. Lara, Cristiana L. & Koenemann, Jochen & Nie, Yisu & de Souza, Cid C., 2023. "Scalable timing-aware network design via lagrangian decomposition," European Journal of Operational Research, Elsevier, vol. 309(1), pages 152-169.
    16. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    17. S. Khodayifar & M. A. Raayatpanah & P. M. Pardalos, 2019. "A polynomial time algorithm for the minimum flow problem in time-varying networks," Annals of Operations Research, Springer, vol. 272(1), pages 29-39, January.
    18. Ryo Kawasaki & Hideo Konishi & Junki Yukawa, 2023. "Equilibria in bottleneck games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 649-685, September.
    19. Watling, D.P. & Shepherd, S.P. & Koh, A., 2015. "Cordon toll competition in a network of two cities: Formulation and sensitivity to traveller route and demand responses," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 93-116.
    20. Cary Deck & Erik O Kimbrough & Steeve Mongrain, 2014. "Paying for Express Checkout: Competition and Price Discrimination in Multi-Server Queuing Systems," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:147:y:2024:i:c:p:19-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.