IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i6p1389-1403.html
   My bibliography  Save this article

Inverse Optimization: A New Perspective on the Black-Litterman Model

Author

Listed:
  • Dimitris Bertsimas

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Vishal Gupta

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Ioannis Ch. Paschalidis

    (Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215)

Abstract

The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct “BL”-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new “BL”-type estimators and their corresponding portfolios: a mean variance inverse optimization (MV-IO) portfolio and a robust mean variance inverse optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward trade-off than their BL counterparts and are more robust to incorrect investor views.

Suggested Citation

  • Dimitris Bertsimas & Vishal Gupta & Ioannis Ch. Paschalidis, 2012. "Inverse Optimization: A New Perspective on the Black-Litterman Model," Operations Research, INFORMS, vol. 60(6), pages 1389-1403, December.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:6:p:1389-1403
    DOI: 10.1287/opre.1120.1115
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1115
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bertsimas, Dimitris & Lauprete, Geoffrey J. & Samarov, Alexander, 2004. "Shortfall as a risk measure: properties, optimization and applications," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1353-1381, April.
    2. Dimitris Bertsimas & David B. Brown, 2009. "Constructing Uncertainty Sets for Robust Linear Optimization," Operations Research, INFORMS, vol. 57(6), pages 1483-1495, December.
    3. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2009. "Constructing Risk Measures from Uncertainty Sets," Operations Research, INFORMS, vol. 57(5), pages 1129-1141, October.
    4. Rosella Giacometti & Marida Bertocchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2007. "Stable distributions in the Black-Litterman approach to asset allocation," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 423-433.
    5. Pastor, Lubos & Stambaugh, Robert F., 2000. "Comparing asset pricing models: an investment perspective," Journal of Financial Economics, Elsevier, vol. 56(3), pages 335-381, June.
    6. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    7. Ulf Herold, 2005. "Computing implied returns in a meaningful way," Journal of Asset Management, Palgrave Macmillan, vol. 6(1), pages 53-64, June.
    8. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    9. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Grootveld, Henk & Hallerbach, Winfried, 1999. "Variance vs downside risk: Is there really that much difference?," European Journal of Operational Research, Elsevier, vol. 114(2), pages 304-319, April.
    12. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    13. Clemens Heuberger, 2004. "Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 329-361, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shea D. Chen & Andrew E. B. Lim, 2020. "A Generalized Black–Litterman Model," Operations Research, INFORMS, vol. 68(2), pages 381-410, March.
    2. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    3. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    4. Yu, Shi & Wang, Haoran & Dong, Chaosheng, 2023. "Learning risk preferences from investment portfolios using inverse optimization," Research in International Business and Finance, Elsevier, vol. 64(C).
    5. Merve Bodur & Timothy C. Y. Chan & Ian Yihang Zhu, 2022. "Inverse Mixed Integer Optimization: Polyhedral Insights and Trust Region Methods," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1471-1488, May.
    6. Rishabh Gupta & Qi Zhang, 2022. "Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2720-2735, September.
    7. Vusal Babashov & Antoine Sauré & Onur Ozturk & Jonathan Patrick, 2023. "Setting wait time targets in a multi‐priority patient setting," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1958-1974, June.
    8. Ghobadi, Kimia & Mahmoudzadeh, Houra, 2021. "Inferring linear feasible regions using inverse optimization," European Journal of Operational Research, Elsevier, vol. 290(3), pages 829-843.
    9. Lindong Liu & Xiangtong Qi & Zhou Xu, 2024. "Stabilizing Grand Cooperation via Cost Adjustment: An Inverse Optimization Approach," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 635-656, March.
    10. Harris, Richard D.F. & Stoja, Evarist & Tan, Linzhi, 2017. "The dynamic Black–Litterman approach to asset allocation," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1085-1096.
    11. Bogdan Grechuk & Andrzej Palczewski & Jan Palczewski, 2018. "On the solution uniqueness in portfolio optimization and risk analysis," Papers 1810.11299, arXiv.org, revised Oct 2020.
    12. I-Chen Lu & Kai-Hong Tee & Baibing Li, 2019. "Asset allocation with multiple analysts’ views: a robust approach," Journal of Asset Management, Palgrave Macmillan, vol. 20(3), pages 215-228, May.
    13. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
    14. Susan Jia Xu & Mehdi Nourinejad & Xuebo Lai & Joseph Y. J. Chow, 2018. "Network Learning via Multiagent Inverse Transportation Problems," Service Science, INFORMS, vol. 52(6), pages 1347-1364, December.
    15. Anas Abdelhakmi & Andrew Lim, 2024. "A Multi-Period Black-Litterman Model," Papers 2404.18822, arXiv.org.
    16. Mihnea S. Andrei & Sujit K. Ghosh & Jian Zou, 2021. "Dynamic Correlation Multivariate Stochastic Volatility Black-Litterman With Latent Factors," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 1-1, March.
    17. Eranda c{C}ela & Stephan Hafner & Roland Mestel & Ulrich Pferschy, 2022. "Integrating multiple sources of ordinal information in portfolio optimization," Papers 2211.00420, arXiv.org, revised Jul 2023.
    18. Yijie Peng & Michael C. Fu & Bernd Heidergott & Henry Lam, 2020. "Maximum Likelihood Estimation by Monte Carlo Simulation: Toward Data-Driven Stochastic Modeling," Operations Research, INFORMS, vol. 68(6), pages 1896-1912, November.
    19. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    20. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    21. Timothy C. Y. Chan & Taewoo Lee & Daria Terekhov, 2019. "Inverse Optimization: Closed-Form Solutions, Geometry, and Goodness of Fit," Management Science, INFORMS, vol. 65(3), pages 1115-1135, March.
    22. Kocuk, Burak & Cornuéjols, Gérard, 2020. "Incorporating Black-Litterman views in portfolio construction when stock returns are a mixture of normals," Omega, Elsevier, vol. 91(C).
    23. Davis, Mark & Lleo, Sébastien, 2020. "Debiased expert forecasts in continuous-time asset allocation," Journal of Banking & Finance, Elsevier, vol. 113(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    2. Jaehyung Choi & Hyangju Kim & Young Shin Kim, 2021. "Diversified reward-risk parity in portfolio construction," Papers 2106.09055, arXiv.org, revised Sep 2022.
    3. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    4. Lagos, Guido & Espinoza, Daniel & Moreno, Eduardo & Vielma, Juan Pablo, 2015. "Restricted risk measures and robust optimization," European Journal of Operational Research, Elsevier, vol. 241(3), pages 771-782.
    5. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    6. Michael Senescall & Rand Kwong Yew Low, 2024. "Quantitative Portfolio Management: Review and Outlook," Mathematics, MDPI, vol. 12(18), pages 1-25, September.
    7. Dimitris Bertsimas & Akiko Takeda, 2015. "Optimizing over coherent risk measures and non-convexities: a robust mixed integer optimization approach," Computational Optimization and Applications, Springer, vol. 62(3), pages 613-639, December.
    8. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    9. Roumpis, Efthymios & Syriopoulos, Theodore, 2014. "Dynamics and risk factors in hedge funds returns: Implications for portfolio construction and performance evaluation," The Journal of Economic Asymmetries, Elsevier, vol. 11(C), pages 58-77.
    10. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    11. Víctor M. Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, "undated". "Portfolios in the Ibex 35 index: Alternative methods to the traditional framework, a comparative with the naive diversification in a pre- and post- crisis context," Documentos de Trabajo del ICAE 2015-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Jun 2015.
    12. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    13. Kouaissah, Noureddine, 2021. "Using multivariate stochastic dominance to enhance portfolio selection and warn of financial crises," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 480-493.
    14. Schuhmacher, Frank & Auer, Benjamin R., 2014. "Sufficient conditions under which SSD- and MR-efficient sets are identical," European Journal of Operational Research, Elsevier, vol. 239(3), pages 756-763.
    15. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    16. Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
    17. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    18. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    19. Yuki Shigeta, 2016. "Optimality of Naive Investment Strategies in Dynamic MeanVariance Optimization Problems with Multiple Priors," Discussion papers e-16-004, Graduate School of Economics , Kyoto University.
    20. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:6:p:1389-1403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.