IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1810.11299.html
   My bibliography  Save this paper

On the solution uniqueness in portfolio optimization and risk analysis

Author

Listed:
  • Bogdan Grechuk
  • Andrzej Palczewski
  • Jan Palczewski

Abstract

We consider the issue of solution uniqueness for portfolio optimization problem and its inverse for asset returns with a finite number of possible scenarios. The risk is assessed by deviation measures introduced by [Rockafellar et al., Mathematical Programming, Ser. B, 108 (2006), pp. 515-540] instead of variance as in the Markowitz optimization problem. We prove that in general one can expect uniqueness neither in forward nor in inverse problems. We discuss consequences of that non-uniqueness for several problems in risk analysis and portfolio optimization, including capital allocation, risk sharing, cooperative investment, and the Black-Litterman methodology. In all cases, the issue with non-uniqueness is closely related to the fact that subgradient of a convex function is non-unique at the points of non-differentiability. We suggest methodology to resolve this issue by identifying a unique "special" subgradient satisfying some natural axioms. This "special" subgradient happens to be the Stainer point of the subdifferential set.

Suggested Citation

  • Bogdan Grechuk & Andrzej Palczewski & Jan Palczewski, 2018. "On the solution uniqueness in portfolio optimization and risk analysis," Papers 1810.11299, arXiv.org, revised Oct 2020.
  • Handle: RePEc:arx:papers:1810.11299
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1810.11299
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Vishal Gupta & Ioannis Ch. Paschalidis, 2012. "Inverse Optimization: A New Perspective on the Black-Litterman Model," Operations Research, INFORMS, vol. 60(6), pages 1389-1403, December.
    2. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    3. Grechuk, Bogdan, 2015. "The center of a convex set and capital allocation," European Journal of Operational Research, Elsevier, vol. 243(2), pages 628-636.
    4. Grechuk, Bogdan & Zabarankin, Michael, 2016. "Inverse portfolio problem with coherent risk measures," European Journal of Operational Research, Elsevier, vol. 249(2), pages 740-750.
    5. Damir Filipović & Michael Kupper, 2008. "Equilibrium Prices For Monetary Utility Functions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 325-343.
    6. Grechuk, Bogdan & Zabarankin, Michael, 2014. "Inverse portfolio problem with mean-deviation model," European Journal of Operational Research, Elsevier, vol. 234(2), pages 481-490.
    7. Jianming Xia, 2004. "Multi-agent investment in incomplete markets," Finance and Stochastics, Springer, vol. 8(2), pages 241-259, May.
    8. SALINETTI, Gabriella & WETS, Roger J.-B., 1979. "On the convergence of sequences of convex sets in finite dimensions," LIDAM Reprints CORE 352, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Grechuk, Bogdan & Zabarankin, Michael, 2018. "Direct data-based decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 267(1), pages 200-211.
    10. Bogdan Grechuk & Michael Zabarankin, 2017. "Synergy effect of cooperative investment," Annals of Operations Research, Springer, vol. 249(1), pages 409-431, February.
    11. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    12. Rose‐Anne Dana, 2005. "A Representation Result For Concave Schur Concave Functions," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 613-634, October.
    13. Rockafellar, R. Tyrrell & Uryasev, Stan & Zabarankin, M., 2007. "Equilibrium with investors using a diversity of deviation measures," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3251-3268, November.
    14. A. Cherny, 2006. "Weighted V@R and its Properties," Finance and Stochastics, Springer, vol. 10(3), pages 367-393, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grechuk, Bogdan, 2023. "Extended gradient of convex function and capital allocation," European Journal of Operational Research, Elsevier, vol. 305(1), pages 429-437.
    2. Bogdan Grechuk & Michael Zabarankin, 2017. "Synergy effect of cooperative investment," Annals of Operations Research, Springer, vol. 249(1), pages 409-431, February.
    3. Grechuk, Bogdan, 2015. "The center of a convex set and capital allocation," European Journal of Operational Research, Elsevier, vol. 243(2), pages 628-636.
    4. Bogdan Grechuk & Anton Molyboha & Michael Zabarankin, 2009. "Maximum Entropy Principle with General Deviation Measures," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 445-467, May.
    5. Grechuk, Bogdan & Zabarankin, Michael, 2018. "Direct data-based decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 267(1), pages 200-211.
    6. Bogdan Grechuk & Michael Zabarankin, 2012. "Optimal risk sharing with general deviation measures," Annals of Operations Research, Springer, vol. 200(1), pages 9-21, November.
    7. Grechuk, Bogdan & Zabarankin, Michael, 2016. "Inverse portfolio problem with coherent risk measures," European Journal of Operational Research, Elsevier, vol. 249(2), pages 740-750.
    8. Grechuk, Bogdan & Zabarankin, Michael, 2014. "Inverse portfolio problem with mean-deviation model," European Journal of Operational Research, Elsevier, vol. 234(2), pages 481-490.
    9. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    10. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2011. "Stable solutions for optimal reinsurance problems involving risk measures," European Journal of Operational Research, Elsevier, vol. 214(3), pages 796-804, November.
    11. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    12. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    13. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera & Thorsten Schmidt, 2019. "Fair Estimation of Capital Risk Allocation," Papers 1902.10044, arXiv.org, revised Nov 2019.
    14. Tomasz R. Bielecki & Igor Cialenco & Shibi Feng, 2018. "A Dynamic Model of Central Counterparty Risk," Papers 1803.02012, arXiv.org.
    15. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    16. Acciaio Beatrice & Svindland Gregor, 2013. "Are law-invariant risk functions concave on distributions?," Dependence Modeling, De Gruyter, vol. 1(2013), pages 54-64, December.
    17. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    18. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    19. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    20. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1810.11299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.