IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v62y2015i3p613-639.html
   My bibliography  Save this article

Optimizing over coherent risk measures and non-convexities: a robust mixed integer optimization approach

Author

Listed:
  • Dimitris Bertsimas
  • Akiko Takeda

Abstract

Recently, coherent risk measure minimization was formulated as robust optimization and the correspondence between coherent risk measures and uncertainty sets of robust optimization was investigated. We study minimizing coherent risk measures under a norm equality constraint with the use of robust optimization formulation. Not only existing coherent risk measures but also a new coherent risk measure is investigated by setting a new uncertainty set. The norm equality constraint itself has a practical meaning or plays a role to prevent a meaningless solution, the zero vector, in the context of portfolio optimization or binary classification in machine learning, respectively. For such advantages, the convexity is sacrificed in the formulation. However, we show a condition for an input of our problem which guarantees that the nonconvex constraint is convexified without changing the optimality of the problem. If the input does not satisfy the condition, we propose to solve a mixed integer optimization problem by using the $$\ell _1$$ ℓ 1 or $$\ell _\infty $$ ℓ ∞ -norm. The numerical experiments show that our approach has good performance for portfolio optimization and binary classification and also imply its flexibility of modelling that makes it possible to deal with various coherent risk measures. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Dimitris Bertsimas & Akiko Takeda, 2015. "Optimizing over coherent risk measures and non-convexities: a robust mixed integer optimization approach," Computational Optimization and Applications, Springer, vol. 62(3), pages 613-639, December.
  • Handle: RePEc:spr:coopap:v:62:y:2015:i:3:p:613-639
    DOI: 10.1007/s10589-015-9755-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-015-9755-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-015-9755-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrzej Ruszczynski & Alexander Shapiro, 2004. "Optimization of Convex Risk Functions," Risk and Insurance 0404001, University Library of Munich, Germany, revised 08 Oct 2005.
    2. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    3. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    4. Dimitris Bertsimas & David B. Brown, 2009. "Constructing Uncertainty Sets for Robust Linear Optimization," Operations Research, INFORMS, vol. 57(6), pages 1483-1495, December.
    5. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2009. "Constructing Risk Measures from Uncertainty Sets," Operations Research, INFORMS, vol. 57(5), pages 1129-1141, October.
    6. Jun-ya Gotoh & Akiko Takeda, 2011. "On the role of norm constraints in portfolio selection," Computational Management Science, Springer, vol. 8(4), pages 323-353, November.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    9. Jun-ya Gotoh & Akiko Takeda & Rei Yamamoto, 2014. "Interaction between financial risk measures and machine learning methods," Computational Management Science, Springer, vol. 11(4), pages 365-402, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fertis, Apostolos & Baes, Michel & Lüthi, Hans-Jakob, 2012. "Robust risk management," European Journal of Operational Research, Elsevier, vol. 222(3), pages 663-672.
    2. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    3. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    4. Kerem Ugurlu, 2014. "On the Coherent Risk Measure Representations in the Discrete Probability Spaces," Papers 1411.4441, arXiv.org, revised Dec 2014.
    5. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    6. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    7. Takano, Yuichi & Gotoh, Jun-ya, 2023. "Dynamic portfolio selection with linear control policies for coherent risk minimization," Operations Research Perspectives, Elsevier, vol. 10(C).
    8. Lagos, Guido & Espinoza, Daniel & Moreno, Eduardo & Vielma, Juan Pablo, 2015. "Restricted risk measures and robust optimization," European Journal of Operational Research, Elsevier, vol. 241(3), pages 771-782.
    9. Jun-ya Gotoh & Akiko Takeda & Rei Yamamoto, 2014. "Interaction between financial risk measures and machine learning methods," Computational Management Science, Springer, vol. 11(4), pages 365-402, October.
    10. Christopher W. Miller & Insoon Yang, 2015. "Optimal Control of Conditional Value-at-Risk in Continuous Time," Papers 1512.05015, arXiv.org, revised Jan 2017.
    11. Jun-ya Gotoh & Stan Uryasev, 2017. "Support vector machines based on convex risk functions and general norms," Annals of Operations Research, Springer, vol. 249(1), pages 301-328, February.
    12. Marcus Ang & Jie Sun & Qiang Yao, 2018. "On the dual representation of coherent risk measures," Annals of Operations Research, Springer, vol. 262(1), pages 29-46, March.
    13. João Claro & Jorge Sousa, 2010. "A multiobjective metaheuristic for a mean-risk static stochastic knapsack problem," Computational Optimization and Applications, Springer, vol. 46(3), pages 427-450, July.
    14. Eskandarzadeh, Saman & Eshghi, Kourosh, 2013. "Decision tree analysis for a risk averse decision maker: CVaR Criterion," European Journal of Operational Research, Elsevier, vol. 231(1), pages 131-140.
    15. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2009. "Constructing Risk Measures from Uncertainty Sets," Operations Research, INFORMS, vol. 57(5), pages 1129-1141, October.
    16. Kei Nakagawa & Shuhei Noma & Masaya Abe, 2020. "RM-CVaR: Regularized Multiple $\beta$-CVaR Portfolio," Papers 2004.13347, arXiv.org, revised May 2020.
    17. Radu Boţ & Alina-Ramona Frătean, 2011. "Looking for appropriate qualification conditions for subdifferential formulae and dual representations for convex risk measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(2), pages 191-215, October.
    18. Dimitris Bertsimas & Vishal Gupta & Ioannis Ch. Paschalidis, 2012. "Inverse Optimization: A New Perspective on the Black-Litterman Model," Operations Research, INFORMS, vol. 60(6), pages 1389-1403, December.
    19. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
    20. Yu, Guodong & Haskell, William B. & Liu, Yang, 2017. "Resilient facility location against the risk of disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 82-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:62:y:2015:i:3:p:613-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.